[1] 朱锴,付忠良,陶攀,等.基于自适应均值漂移的超声心动图左心室分割方法[J].生物医学工程学杂志,2018,35(2):273-279.(ZHU K, FU Z, TAO P, et al. Left ventricle segmentation in echocardiography based on adaptive mean shift[J]. Journal of Biomedical Engineering, 2018, 35(2):273-279.)
[2] SADEK I, ELAWADY M, STEFANOVSKI V. Automated breast lesion segmentation in ultrasound images[J]. ArXiv Preprint, 2016, 2016:1609.08364.
[3] 朱永杰,邱天爽.基于改进LGDF模型的超声图像自动分割方法[J].大连理工大学学报,2016,56(1):28-34.(ZHU Y J, QIU T S. Automated segmentation method for ultrasound image based on improved LGDF model[J]. Journal of Dalian University of Technology, 2016, 56(1):28-34.)
[4] JIANG P, PENG J, ZHANG G, et al. Learning-based automatic breast tumor detection and segmentation in ultrasound images[C]//Proceedings of the 2012 IEEE International Symposium on Biomedical Imaging. Piscataway, NJ:IEEE, 2012:1587-1590.
[5] NGO T A, LU Z, CARNEIRO G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance[J]. Medical Image Analysis, 2017, 35:159-171.
[6] 纪祥虎,高思聪,黄志标,等. 基于Centripetal Catmull-Rom曲线的经食道超声心动图左心室分割方法[J]. 四川大学学报(工程科学版),2016,48(5):84-90.(JI X H, GAO S C, HUANG Z B, et al. Left ventricle segmentation in transesophageal echocardiography based on Centripetal Catmull-Rom curve[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(5):84-90.)
[7] VARGAS-QUINTERO L, ESCALANTE-RAMÍREZ B, CAMARGO M L, et al. Left ventricle segmentation in fetal echocardiography using a multi-texture active appearance model based on the steered Hermite transform[J]. Computer Methods and Programs in Biomedicine, 2016, 137:231-245.
[8] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
[9] ZHENG S, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks[C]//ICCV'15:Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2015:1529-1537.
[10] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//ICCV 2017:Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2017:2961-2969.
[11] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//MICCAI 2015:Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Berlin:Springer, 2015:234-241.
[12] GAO M, XU Z, LU L, et al. Segmentation label propagation using deep convolutional neural networks and dense conditional random field[C]//Proceedings of the 2016 IEEE International Symposium on Biomedical Imaging. Piscataway, NJ:IEEE, 2016:1265-1268.
[13] LI Y, YI G, WANG Y, et al. Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(8):1886-1895.
[14] 詹曙,梁植程,谢栋栋.前列腺磁共振图像分割的反卷积神经网络方法[J].中国图象图形学报,2017,22(4):516-522.(ZHAN S, LIANG Z C, XIE D D. Deconvolutional neural network for prostate MRI segmentation[J]. Journal of Image and Graphics, 2017, 22(4):516-522.)
[15] JAFARI M H, GIRGIS H, LIAO Z, et al. A unified framework integrating recurrent fully-convolutional networks and optical flow for segmentation of the left ventricle in echocardiography data[C]//Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Berlin:Springer, 2018:29-37.
[16] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. ArXiv Preprint, 2014, 2014:1409.1556.
[17] GRAHAM R L. An efficient algorithm for determining the convex hull of a finite planar set[J]. Information Processing Letters, 1978, 7(1):53-55. |