[1] 郑增威,杜俊杰,霍梅梅,等.基于可穿戴传感器的人体活动识别研究综述[J].计算机应用,2018,38(5):1223-1229.(ZHENG Z W, DU J J, HUO M M, et al. Review of human activity recognition based on wearable sensors[J]. Journal of Computer Applications, 2018, 38(5):1223-1229.)
[2] 魏书音.从Facebook数据泄露事件看网络运营者对第三方应用的安全管理责任[J].网络空间安全,2018,9(3):43-46.(WEI S Y. Analyze network operators' responsibility for security management of third-party applications from the Facebook data breach[J]. Information Security and Technology, 2018, 9(3):43-46.)
[3] PAPAGEORGIOU A, STRIGKOS M, POLITOU E, et al. Security and privacy analysis of mobile health applications:the alarming state of practice[J]. IEEE Access, 2018, 6(99):9390-9403.
[4] DUCHI J C, JORDAN M I, WAINWRIGHT M J. Local privacy and statistical minimax rates[C]//Proceedings of the 201354th Annual IEEE Symposium on Foundations of Computer Science. Piscataway, NJ:IEEE, 2013:429-438.
[5] 叶青青,孟小峰,朱敏杰,等.本地化差分隐私研究综述[J].软件学报,2018,29(7):1981-2005.(YE Q Q, MENG X F, ZHU M J, et al. Survey on local differential privacy[J]. Journal of Software, 2018, 29(7):1981-2005.)
[6] 霍峥,张坤,贺萍.满足本地化差分隐私的众包位置数据采集[J].计算机应用,2019,39(3):763-768.(HUO Z, ZHANG K, HE P. Local differentially private spatial data crowdsourcing[J]. Journal of Computer Applications, 2019, 39(3):763-768.)
[7] RAGHAVAN K R, CHAKRABORTY S, SRIVASTAVA M, et al. OVERRIDE:a mobile privacy framework for context-driven perturbation and synthesis of sensor data streams[C]//Proceedings of the 2012 International Workshop on Sensing Applications on Mobile Phones. New York:ACM, 2012:Article No. 2.
[8] KOTZ D, AVANCHA S, BAXI A. A privacy framework for mobile health and home-care systems[C]//Proceedings of the 2009 Workshop on Security and Privacy in Medical and Home-Care Systems. New York:ACM, 2009:1-12.
[9] ERLINGSSON U, PIHUR V, KOROLOVA A. RAPPOR:randomized aggregatable privacy-preserving ordinal response[C]//Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM, 2014:1054-1067.
[10] BASSILY R, SMITH A. Local, private, efficient protocols for succinct histograms[C]//Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing. New York:ACM, 2015:127-135.
[11] NGUYEN T T, XIAO X, YANG Y, et al. Collecting and analyzing data from smart device users with local differential privacy[J]. ArXiv Preprint, 2016, 2016:1606.05053.
[12] WANG T, BLOCKI J, LI N, et al. Optimizing locally differentially private protocols[J]. ArXiv Preprint, 2017, 2017:1705.04421.
[13] FANTI G, PIHUR V, ERLINGSSON U. Building a RAPPOR with the unknown:Privacy-preserving learning of associations and data dictionaries[J]. ArXiv Preprint, 2016, 2016:1503.01214.
[14] AKTER M, HASHEM T. Computing aggregates over numeric data with personalized local differential privacy[C]//Proceedings of the 2017 Australasian Conference on Information Security and Privacy. Berlin:Springer, 2017:249-260.
[15] CHEN R, LI H, QIN A K, et al. Private spatial data aggregation in the local setting[C]//Proceedings of the 2016 IEEE International Conference on Data Engineering. Piscataway, NJ:IEEE, 2016:289-300.
[16] DWORK C, LEI J. Differential privacy and robust statistics[C]//Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing. New York:ACM, 2009:371-380.
[17] WARNER S L. Randomized response:a survey technique for eliminating evasive answer bias[J]. Journal of the American Statistical Association, 1965, 60(309):63-69. |