计算机应用 ›› 2019, Vol. 39 ›› Issue (7): 1985-1990.DOI: 10.11772/j.issn.1001-9081.2018122466

• 网络空间安全 • 上一篇    下一篇

可穿戴设备数值型敏感数据本地差分隐私保护

马方方, 刘树波, 熊星星, 牛晓光   

  1. 武汉大学 计算机学院, 武汉 430072
  • 收稿日期:2018-12-13 修回日期:2019-01-30 出版日期:2019-07-10 发布日期:2019-03-29
  • 通讯作者: 刘树波
  • 作者简介:马方方(1993-),女,安徽阜阳人,硕士研究生,主要研究方向:信息安全、差分隐私;刘树波(1970-),男,湖北武汉人,教授,博士生导师,博士,主要研究方向:信息安全、嵌入式系统及安全;熊星星(1989-),男,江西南昌人,博士研究生,主要研究方向:信息安全、差分隐私;牛晓光(1979-),男,河北保定人,副教授,博士,主要研究方向:移动计算、无线传感网、信息安全。
  • 基金资助:

    国家自然科学基金资助项目(61872431);湖北省技术创新重大专项(2018AAA046);武汉市应用基础研究计划项目(2017060201010162)。

Privacy protection based on local differential privacy for numerical sensitive data of wearable devices

MA Fangfang, LIU Shubo, XIONG Xingxing, NIU Xiaoguang   

  1. School of Computer Science, Wuhan University, Wuhan Hubei 430072, China
  • Received:2018-12-13 Revised:2019-01-30 Online:2019-07-10 Published:2019-03-29
  • Supported by:

    This work is partially supported by the National Natural Science Foundation of China (61872431), the Major Technical Innovation Project of Hubei Province (2018AAA046), the Applied Basic Project of Wuhan (2017060201010162).

摘要:

针对数据服务器不可信时,直接收集可穿戴设备多维数值型敏感数据有可能存在泄露用户隐私信息的问题,通过引入本地差分隐私模型,提出了一种可穿戴设备数值型敏感数据的个性化隐私保护方案。首先,通过设置隐私预算的阈值区间,用户在区间内设置满足个人隐私需求的隐私预算,同时也满足了个性化本地差分隐私;其次,利用属性安全域将敏感数据进行归一化;最后,利用伯努利分布分组扰动多维数值型敏感数据,并利用属性安全域对扰动结果进行归一化还原。理论分析证明了该算法满足个性化本地差分隐私。实验结果表明该算法的最大相对误差(MRE)明显低于Harmony算法,在保护用户隐私的基础上有效地提高了不可信数据服务器从可穿戴设备收集数据的可用性。

关键词: 可穿戴设备, 不可信第三方, 本地差分隐私, 个性化, 归一化

Abstract:

Focusing on the issue that collecting multi-dimensional numerical sensitive data directly from wearable devices may leak users' privacy information when a data server was untrusted, by introducing a local differential privacy model, a personalized local privacy protection scheme for the numerical sensitive data of wearable devices was proposed. Firstly, by setting the privacy budget threshold interval, a users' privacy budget within the interval was set to meet the individual privacy needs, which also met the definition of personalized local differential privacy. Then, security domain was used to normalize the sensitive data. Finally, the Bernoulli distribution was used to perturb multi-dimensional numerical data by grouping, and attribute security domain was used to restore the disturbance results. The theoretical analysis shows that the proposed algorithm meets the personalized local differential privacy. The experimental results demonstrate that the proposed algorithm has lower Max Relative Error (MRE) than that of Harmony algorithm, thus effectively improving the utility of aggregated data collecting from wearable devices with the untrusted data server as well as protecting users' privacy.

Key words: wearable device, untrusted third-party, local differential privacy, personalization, normalization

中图分类号: