[1] DENNING D E. An intrusion-detection model[J]. IEEE Transactions on Software Engineering, 2006, SE-13(2):222-232.
[2] 孔令智.基于网络异常的入侵检测算法研究[D].北京:北京交通大学,2017:15-16.(KONG L Z. Research on intrusion detection algorithm based on network anomaly[D]. BeiJing:Beijing Jiaotong University, 2017:15-16.)
[3] 沈学利,覃淑娟.基于SMOTE和深度信念网络的异常检测[J].计算机应用,2018,38(7):1941-1945.(SHEN X L, QIN S J. Anomaly detection based on synthetic minority oversampling technique and deep belief network[J]. Journal of Computer Applications, 2018, 38(7):1941-1945.)
[4] YADAV S, SUBRAMANIAN S. Detection of application layer DDoS attack by feature learning using stacked autoencoder[C]//ICCTICT 2016:Proceedings of the 2016 International Conference on Computational Techniques in Information and Communication Technologies. Piscataway, NJ:IEEE, 2016:361-366.
[5] 方圆,李明,王萍,等.基于混合卷积神经网络和循环神经网络的入侵检测模型[J].计算机应用,2018,38(10):2903-2907.(FANG Y, LI M, WANG P, et al. Intrusion detection model based on hybrid convolutional neural network and recurrent neural network[J]. Journal of Computer Applications, 2018, 38(10):2903-2907.)
[6] 高妮,高岭,贺毅岳,等.基于自编码网络特征降维的轻量级入侵检测模型[J].电子学报,2017,45(3):730-739.(GAO N, GAO L, HE Y Y, et al. A lightweight intrusion detection model based on autoencoder network with feature reduction[J]. Acta Electronica Sinica, 2017, 45(3):730-739.)
[7] 贾凡,严妍,张家琪.基于K-means聚类特征消减的网络异常检测[J].清华大学学报(自然科学版),2018,58(2):137-142.(JIA F, YAN Y, ZHANG J Q. K-means based feature reduction for network anomaly detection[J]. Journal of Tsinghua University (Natural Science Edition), 2018, 58(2):137-142.)
[8] PENG K, LEUNG V C M, HUANG Q. Clustering approach based on mini batch Kmeans for intrusion detection system over big data[J]. IEEE Access, 2018, 6(99):11897-11906.
[9] PATHAK V, ANANTHANARAYANA V S. A novel multi-threaded K-means clustering approach for intrusion detection[C]//Proceedings of the 2012 IEEE International Conference on Computer Science and Automation Engineering. Piscataway, NJ:IEEE, 2012:757-760.
[10] FITRIANI S, MANDALA S, MURTI M A. Review of semi-supervised method for intrusion detection system[C]//Proceedings of the 2016 Asia Pacific Conference on Multimedia and Broadcasting. Piscataway, NJ:IEEE, 2016:36-41.
[11] HAWELIYA J, NIGAM B. Network intrusion detection using semi supervised support vector machine[J]. International Journal of Computer Applications, 2014, 85(9):27-31.
[12] KUMAR K M, REDDY A R M. A fast DBSCAN clustering algorithm by accelerating neighbor searching using Groups method[J]. Pattern Recognition, 2016, 58:39-48.
[13] ZHOU Z H, LI M. Tri-training:exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11):1529-1541.
[14] 刘开云.基于KD-Tree的KNN沙尘孤立点监测算法的研究与应用[D].开封:河南大学,2018:22-24.(LIU K Y. Research and application of KNN sand-dust isolated point monitoring algorithm based on KD-Tree[D]. Kaifeng:Henan University, 2018:22-24.)
[15] REDMOND S J, HENEGHAN C. A method for initialising the K-means clustering algorithm using kd-trees[J]. Pattern Recognition Letters, 2007, 28(8):965-973.
[16] KANUNGO T, MOUNT D M, NETANYAHU N S, et al. The analysis of a simple K-means clustering algorithm[C]//Proceedings of the Sixteenth Annual Symposium on Computational Geometry. New York:ACM, 2000:100-109.
[17] KUMAR K M, REDDY A R M. An efficient K-means clustering filtering algorithm using density based initial cluster centers[J]. Information Sciences, 2017, 418/419:286-301.
[18] AL-JARRAH O Y, AL-HAMMDI Y, YOO P D, et al. Semi-supervised multi-layered clustering model for intrusion detection[J]. Digital Communications and Networks, 2018, 4(4):277-286.
[19] AHMIM A, DERDOUR M, FERRAG M A. An intrusion detection system based on combining probability predictions of a tree of classifiers[J]. International Journal of Communication Systems, 2018, 31(9):e3457.
[20] TAVALLAEE M, BAGHERI E, LU W, et al. A detailed analysis of the KDD CUP 99 data set[C]//Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. Piscataway, NJ:IEEE, 2009:1-6.
[21] ZHANG X F, ZHU P D, TIAN J W, et al. An effective semi-supervised model for intrusion detection using feature selection based LapSVM[C]//CITS 2017:Proceedings of the 2017 International Conference on Computer, Information and Telecommunication Systems. Piscataway, NJ:IEEE, 2017:283-286.
[22] ASHFAQ R A R, WANG X Z, HUANG J Z, et al. Fuzziness based semi-supervised learning approach for intrusion detection system[J]. Information Sciences, 2017, 378:484-497.
[23] CATALTEPE Z, EKMEKÇI U, CATALTEPE T, et al. Online feature selected semi-supervised decision trees for network intrusion detection[C]//NOMS 2016:Proceedings of the 2016 IEEE/IFIP Network Operations and Management Symposium. Piscataway, NJ:IEEE, 2016:1085-1088. |