计算机应用 ›› 2011, Vol. 31 ›› Issue (03): 736-740.DOI: 10.3724/SP.J.1087.2011.00736
胡步发,陈炳兴,黄银成
HU Bu-fa,CHEN Bing-xing,HUANG Yin-cheng
摘要: 针对非特定人人脸表情平均识别率普遍不高(约65%)的问题,提出了一种基于表情子空间和多分类器集成的人脸表情识别新方法。通过局部二进制模式(LBP)与高阶奇异值分解(HOSVD)方法对训练集1中的人脸图像的全脸、眼睛(包括眉毛)和嘴巴三个区域进行特征提取与分解,建立相应的表情子空间;利用支持向量机(SVM)方法对训练集2中的人脸图像在表情子空间训练,得到模糊系统参数;最后结合表情子空间与多分类器集成,对测试集中的图像进行表情分类识别。在JAFFE人脸表情库中实验,获得了71.43%的平均识别率。实验结果表明,该方法有效地减少了人脸外观特征和表情表现方式所带来的影响,具有更好的识别效果。
中图分类号: