计算机应用 ›› 2011, Vol. 31 ›› Issue (09): 2546-2550.DOI: 10.3724/SP.J.1087.2011.02546
蒋勇1,谭怀亮2,李光文1
JIANG Yong1,TAN Huai-liang2,LI Guang-wen1
摘要: 在处理大数据集聚类问题上,谱聚算法因存在占用存储空间大、时间复杂度高的缺陷而难以推广,针对此问题,提出采用多次分割、向上向下双向收缩的QR算法求得特征值对应的特征向量来实现降维,并在此基础上构造映射空间上的样本来实现量子遗传谱聚算法的聚类。该方法通过映射为后续的量子遗传谱聚算法聚类提供低维的输入,而量子遗传算法具有快速收敛到全局最优并且对初始化不敏感的特性,从而可以获得良好的聚类结果。实验结果显示,使用该算法的聚类比谱聚算法、K-means算法、NJW算法等单一方法具有更好的收敛性、稳定性和更高的全局最优。
中图分类号: