计算机应用 ›› 2013, Vol. 33 ›› Issue (03): 825-829.DOI: 10.3724/SP.J.1087.2013.00825
张健飞,沈德飞*
ZHANG Jianfei, SHEN Defei*
摘要: 研究了基于GPU的稀疏线性方程组的预条件共轭梯度法加速求解问题,并基于统一计算设备架构(CUDA)平台编制了程序,在NVIDIAGT430 GPU平台上进行了程序性能测试和分析。稀疏矩阵采用压缩稀疏行(CSR)格式压缩存储,针对预条件共轭梯度法的算法特性,研究了基于GPU的稀疏矩阵与向量相乘的性能优化、数据从CPU端传到GPU端的加速传输措施。将编制的稀疏矩阵与向量相乘的kernel函数和CUSPARSE函数库中的cusparseDcsrmv函数性能进行了对比,最优得到了2.1倍的加速效果。对于整个预条件共轭梯度法,通过自编kernel函数来实现的算法较之采用CUBLAS库和CUSPARSE库实现的算法稍具优势,与CPU端的预条件共轭梯度法相比,最优可以得到7.4倍的加速效果。
中图分类号: