计算机应用 ›› 2013, Vol. 33 ›› Issue (10): 2734-2738.
郭伟1,王西闯1,肖振久2
GUO Wei1,WANG Xichuang1,XIAO Zhenjiu2
摘要: 针对目前常用于P2P流量识别的有监督机器学习方法普遍存在时间代价较高的现状,提出采用时间代价为标准支持向量机四分之一的双支持向量机来构建分类器,并采用K均值集成方法快速生成有标签样本集,组合有标签样本集构成双支持向量机的训练样本,最后利用构建好的双支持向量机分类模型进行P2P流量的识别。实验结果表明采用基于K均值集成结合双支持向量机的方法在P2P流量识别的时间代价、准确率和稳定性方面要远优于标准支持向量机。
中图分类号: