计算机应用 ›› 2013, Vol. 33 ›› Issue (11): 3107-3110.
张炎亮1,陈鑫1,李亚东2
ZHANG Yanliang1,CHEN Xin1,LI Yadong2
摘要: 为了改善小波神经网络(WNN)在处理复杂非线性问题的性能,针对量子粒子群优化(QPSO)算法易早熟、后期多样性差、搜索精度不高的缺点,提出一种同时引入加权系数、引入Cauchy随机数、改进收缩扩张系数和引入自然选择的改进量子粒子群优化算法,将其代替梯度下降法,训练小波基系数和网络权值,再将优化后的参数组合输入小波神经网络,以实现算法的耦合。通过对3个UCI标准数据集的仿真实验表明,与WNN、PSO-WNN、QPSO-WNN算法相比,改进的量子粒子群小波神经网络(MQPSO-WNN)算法的运行时间减少了11%~43%,而计算相对误差较之降低了8%~57%。因此,改进的量子粒子群小波神经网络模型能够更迅速、更精确地逼近最优值。
中图分类号: