计算机应用 ›› 2014, Vol. 34 ›› Issue (8): 2256-2259.DOI: 10.11772/j.issn.1001-9081.2014.08.2256

• 先进计算 • 上一篇    下一篇

基于用户访问特征的云存储副本动态管理节能策略

王政英1,于炯2,英昌甜1,鲁亮1,班爱琴1   

  1. 1. 新疆大学 信息科学与工程学院,乌鲁木齐830046
    2. 新疆大学 软件学院,乌鲁木齐830008;
  • 收稿日期:2014-03-10 修回日期:2014-04-23 发布日期:2014-08-10 出版日期:2014-08-01
  • 通讯作者: 王政英
  • 作者简介:王政英(1984-),女,山西晋城人,硕士研究生,主要研究方向:软件项目管理、云计算、绿色计算;于炯(1964-),男,北京人,教授,博士生导师,博士,主要研究方向:网络安全、网格与分布式计算;英昌甜(1989-),女,新疆乌鲁木齐人,博士研究生,主要研究方向:云计算、分布式存储;鲁亮(1990-),男,湖南湘潭人,硕士研究生,主要研究方向:分布式计算、云计算;班爱琴(1988-),女,河南漯河人,硕士研究生,主要研究方向:云计算。
  • 基金资助:

    国家自然科学基金资助项目;新疆维吾尔族自治区自然科学基金

Energy-efficient strategy for dynamic management of cloud storage replica based on user visiting characteristic

WANG Zhengying1,YU Jiong2,YING Changtian1,LU Liang1,BAN Aiqin1   

  1. 1. School of Information Science and Engineering, Xinjiang University, Urumqi Xinjiang 830046, China;
    2. School of Software, Xinjiang University, Urumqi Xinjiang 830008, China;
  • Received:2014-03-10 Revised:2014-04-23 Online:2014-08-10 Published:2014-08-01
  • Contact: WANG Zhengying

摘要:

针对云计算环境下服务器利用率低、能耗浪费严重的问题,提出一种基于用户访问特征的云存储副本动态管理节能策略。通过把用户访问特征的研究转化为计算Block的访问热度,根据节点的整体访问热度,DataNode主动申请休眠从而达到节能的目的。给出了详细的休眠申请、休眠判断算法,以及在DataNode休眠期间出现对已休眠Block进行访问的情况时如何处理的解决方案。实验结果表明,采用该策略后可休眠29%~42%的DataNode,减少能耗31%,且服务器的用户响应时间不受影响。经过性能分析,得出该策略在保证数据可用性的同时可有效地降低能耗。

Abstract:

For low server utilization and serious energy consumption waste problems in cloud computing environment, an energy-efficient strategy for dynamic management of cloud storage replica based on user visiting characteristic was put forward. Through transforming the study of the user visiting characteristics into calculating the visiting temperature of Block, DataNode actively applied for sleeping so as to achieve the goal of energy saving according to the global visiting temperature.The dormant application and dormancy verifying algorithm was given in detail, and the strategy concerning how to deal with the visit during DataNode dormancy was described explicitly. The experimental results show that after adopting this strategy, 29%-42% DataNode can sleep, energy consumption reduces by 31%, and server response time is well. The performance analysis show that the proposed strategy can effectively reduce the energy consumption while guaranteeing the data availability.

中图分类号: