[1] GE Z, SONG Z. Semiconductor manufacturing process monitoring based on adaptive substatistical PCA[J]. IEEE Transactions on Semiconductor Manufacturing, 2010, 23(1):99-108. [2] CHERRY G A, QIN S J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis[J]. IEEE Transactions on Semiconductor Manufacturing, 2006, 19(2):159-172. [3] GE Z, YANG C, SONG Z. Improved kernel PCA-based monitoring approach for nonlinear processes[J]. Chemical Engineering Science, 2009, 64(9):2245-2255. [4] ZHANG C, LI Y. Study on the fault-detection method in batch process based on statistical pattern analysis[J]. Chinese Journal of Scientific Instrument, 2013, 34(9):2103-2110. [5] SANG W C, LEE C, LEE J M, et al. Fault detection and identification of nonlinear processes based on kernel PCA[J]. Chemometrics & Intelligent Laboratory Systems, 2005, 75(1):55-67. [6] ZHANG Y, HU Z. Multivariate process monitoring and analysis based on multi-scale KPLS[J]. Chemical Engineering Research & Design, 2011, 89(12):2667-2678. [7] GE Z, SONG Z. Mixture Bayesian regularization method of PPCA for multimode process monitoring[J]. AIChE Journal, 2010, 56(11):2838-2849. [8] ZHAO C, YAO Y, GAO F, et al. Statistical analysis and online monitoring for multimode processes with between-mode transitions[J]. Chemical Engineering Science, 2010, 65(22):5961-5975. [9] YU J, QIN S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE Journal, 2008, 54(7):1811-1829. [10] YU J, QIN S J. Multiway Gaussian mixture model based multiphase batch process monitoring[J]. Industrial & Engineering Chemistry Research, 2009, 48(18):8585-8594. [11] WANG J, HE Q P. Multivariate statistical process monitoring based on statistics pattern analysis[J]. Industrial & Engineering Chemistry Research, 2010, 49(17):7858-7869. [12] 张成,李元. 基于统计模量分析间歇过程故障检测方法研究[J]. 仪器仪表学报, 2013, 34(9):2103-2110.(ZHANG C, LI Y. Study on the fault-detection method in batch process based on statistical pattern analysis[J]. Chinese Journal of Scientific Instrument, 2013, 34(9):2103-2110.) [13] 马贺贺, 胡益, 侍洪波. 基于马氏距离局部离群因子方法的复杂化工过程故障检测[J]. 化工学报, 2013, 64(5):1674-1682.(MA H H, HU Y, SHI H B. Fault detection of complex chemical processes using Mahalanobis distance-based local outlier factor[J]. CIESC Journal, 2013, 64(5):1674-1682.) [14] 刘帮莉, 马玉鑫, 侍洪波. 基于局部密度估计的多模态过程故障检测[J]. 化工学报, 2014, 65(8):3071-3081.(LIU B L, MA Y X, SHI H B. Multimode process monitoring based on local density estimation[J]. CIESC Journal, 2014, 65(8):3071-3081.) [15] HE Q P, WANG J. Statistics pattern analysis:a new process monitoring framework and its application to semiconductor batch processes[J]. AIChE Journal, 2015, 57(1):107-121. [16] 张成, 李秀玉, 逄玉俊, 等. 基于GMM的马氏距离kNN故障检测方法[J]. 测控技术, 2014, 33(9):13-17.(ZHANG C, LI X Y, PANG Y J, et al. Mahalanobis distance kNN fault detection method based on Gaussian mixture model[J]. Messurement & Control Technology, 2014, 33(9):13-17.) [17] HE Q P, WANG J. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2007, 20(4):345-354. [18] MA H, HU Y, SHI H B. Fault detection and identification based on the neighborhood standardized local outlier factor method[J]. Industrial & Engineering Chemistry Research, 2013, 52(6):2389-2402. [19] MA H, HU Y, SHI H B. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes[J]. Chemometrics & Intelligent Laboratory Systems, 2012, 118(7):287-300. [20] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF:identifying density-based local outliers[C]//SIGMOD 2000:Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2000:93-104. [21] WISE B M, GALLAGHER N B, BUTLER S W, et al. A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process[J]. Journal of Chemomotrics, 1999. 13(3):379-396. [22] Eigenvector research incorporated. Metal etch data for fault detection evaluation[EB/OL].[2017-05-10]. http://software.eigenvector.com/Data/Etch/index.html. |