[1] 许永忠, 杨海军. 地震反演技术在岩性及火成岩识别中的研究与应用[M]. 徐州:中国矿业大学出版社, 2012:1-17.(XU Y Z, YANG H J. Research and Application of Seismic Inversion Technology in Lithology and Igneous Rock Identification[M]. Xuzhou:China University of Mining and Technology Press,2012:1-17.) [2] 乔宝明, 马继丰, 伊晓玲. 多元统计方法与计算[M]. 徐州:中国矿业大学出版社, 2018:1-27.(QIAO B M,MA J F,YI X L. Multivariate Statistical Methods and Calculations[M]. Xuzhou:China University of Mining and Technology Press,2018:1-27.) [3] 孔祥玉, 冯晓伟, 胡昌华. 广义主成分分析算法及应用[M]. 北京:国防工业出版社, 2018:47-75.(KONG X Y,FENG X W,HU C H. General Principal Component Analysis and Application[M]. Beijing:National Defense Industry Press,2018:47-75.) [4] 谢季坚, 刘承平. 模糊数学方法及其应用[M]. 4版. 武汉:华中科技大学出版社,2013:1-37. (XIE J J,LIU C P. Fuzzy Mathematics Method and Its Application[M]. 4th ed. Wuhan:Huazhong University of Science and Technology Press, 2013:1-37.) [5] 王快妮. 支持向量机鲁棒性模型与算法研究[M]. 北京:北京邮电大学出版社, 2019:6-12.(WANG K N. Research on Robustness Model and Algorithm of Support Vector Machine[M]. Beijing:Beijing University of Posts and Telecommunications Press,2019:6-12.) [6] 韩力群, 施彦. 人工神经网络理论及应用[M]. 北京:机械工业出版社, 2017:1-40.(HAN L Q,SHI Y. Artificial Neural Network Theory and Application[M]. Beijing:China Machine Press, 2017:1-40.) [7] 陈伏兵, 陈秀宏, 高秀梅, 等. 二维主成分分析方法的推广及其在人脸识别中的应用[J]. 计算机应用, 2005, 25(8):1767-1770. (CHEN F B,CHEN X H,GAO X M,et al. Generalization of 2DPCA and its application in face recognition[J]. Journal of Computer Applications,2005,25(8):1767-1770.) [8] 周非, 夏鹏程. 基于主成分分析和卡方距离的信号强度差指纹定位算法[J]. 计算机应用, 2019, 39(5):1405-1410.(ZHOU F, XIA P C. Signal strength difference fingerprint localization algorithm based on principalcomponent analysis and chi-square distance[J]. Journal of Computer Applications,2019,39(5):1405-1410.) [9] 张进, 丁胜, 李波. 改进的基于粒子群优化的支持向量机特征选择和参数联合优化算法[J]. 计算机应用, 2016, 36(5):1330-1335. (ZHANG J, DING S, LI B. Improved particle swarm optimization algorithm for support vector machine feature selection and optimization of parameters[J]. Journal of Computer Applications,2016,36(5):1330-1335.) [10] 章少平, 梁雪春. 优化的支持向量机集成分类器在非平衡数据集分类中的应用[J]. 计算机应用, 2015, 35(5):1306-1309. (ZHANG S P,LIANG X C. Applications of unbalanced data classification based on optimized support vector machine ensemble classifier[J]. Journal of Computer Applications,2015,35(5):1306-1309.) [11] 史兴宇, 邓洪敏, 林宇锋, 等. 基于人工神经网络的数字识别[J]. 计算机应用, 2017, 37(S1):187-189.(SHI X Y,DENG H M,LIN Y F,et al. Figure identification based on artificial neuralnetwork[J]. Journal of Computer Applications,2017,37(S1):187-189.) [12] 程宇, 邓德祥, 颜佳, 等. 基于卷积神经网络的弱光照图像增强算法[J]. 计算机应用, 2019, 39(4):1162-1169.(CHENG Y, DENG D X, YAN J, et al. Weakly illuminated image enhancement algorithm based on convolutional neuralnetwork[J]. Journal of Computer Applications,2019,39(4):1162-1169.) [13] WANG M,LIN Y,MIN F,et al. Cost-sensitive active learning through statistical methods[J]. Information Sciences, 2019, 501:460-482. [14] WANG M,FU K,MIN F,et al. Active learning through label error statistical methods[J]. Knowledge-Based Systems,2020, 189:Article No. 105140. [15] WANG M,MIN F,ZHANG Z,et al. Active learning through density clustering[J]. Expert Systems with Applications,2017, 85:305-317. [16] 贾俊芳. 基于层次聚类的主动学习方法——HC_AL[J]. 计算机应用, 2011, 31(8):2134-2137.(JIA J F. HC_AL:new active learning method based on hierarchical clustering[J]. Journal of Computer Applications,2011,31(8):2134-2137.) [17] 龙军, 章成源. 数据仓库与数据挖掘[M]. 长沙:中南大学出版社, 2018:154-156.(LONG J,ZHANG C Y. Data Warehouse and Data Mining[M]. Changsha:Central South University Press, 2018:154-156.) [18] REYES O,ALTALHI A H,VENTURA S. Statisticalcomparisons of active learning strategies over multiple datasets[J]. KnowledgeBased Systems,2018,145:274-288. [19] 周游, 张广智, 高刚, 等. 核主成分分析法在测井浊积岩岩性识别中的应用[J]. 石油地球物理勘探, 2019, 54(3):667-675. (ZHOU Y,ZHANG G Z,GAO G,et al. Application of nuclear principalcomponent analysis method in logging turbidite lithology identification[J]. Oil Geophysical Prospecting,2019,54(3):667-675.) [20] 杨兆栓, 林畅松, 尹宏, 等. 主成分分析在塔中地区奥陶系鹰山组碳酸盐岩岩性识别中的应用[J]. 天然气地球科学, 2015, 26(1):54-59.(YANG Z S,LIN C S,YIN H,et al. Application of principalcomponent analysis in carbonate lithology identification of the Ordovician Yingshan formation in Tazhong area[J]. Natural Gas Geoscience,2015,26(1):54-59.) [21] 张昭杰, 方石. 基于遗传算法优化的支持向量机在岩性识别中的应用[J]. 世界地质, 2019, 38(2):486-491.(ZHANG Z J, FANG S. Application of support vector machine in lithology identification based on genetic algorithm optimization[J]. World Geology,2019,38(2):486-491.) [22] 苏赋, 马磊, 罗仁泽, 等. 基于改进多分类孪生支持向量机的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2020, 35(1):174-180.(SU F,MA L,LUO R Z,et al. Research and application of logging lithology identification method based on improved multi-class twin support vector machine[J]. Progress in Geophysics,2020,35(1):174-180.) [23] 单敬福, 陈欣欣, 赵忠军, 等. 利用BP神经网络法对致密砂岩气藏储集层复杂岩性的识别[J]. 地球物理学进展, 2015, 30(3):1257-1263. (SHAN J F, CHEN X X, ZHAO Z J, et al. Identification ofcomplex lithology for tight sandstone gas reservoirs on BP neuralnetwork method[J]. Progress in Geophysics,2015, 30(3):1257-1263.) [24] 陈钢花, 梁莎莎, 王军, 等. 卷积神经网络在岩性识别中的应用[J]. 测井技术, 2019, 43(2):129-134.(CHEN G H,LIANG S S, WANG J,et al. Application of convolutional neuralnetwork in lithology identification[J]. Well Logging Technology,2019,43(2):129-134.) [25] HARTIGAN J A,WONG M A. A K-means clustering algorithm[J]. Journal of the Royal Statistical Society:Series C(Applied Statistics),1979,28(1):100-108. [26] RODRIGUEZ A,LAIO A. Clustering by fast search and find of density peaks[J]. Science,2014,344(6191):1492-1496. [27] 林开颜, 徐立鸿, 吴军辉. 快速模糊C均值聚类彩色图像分割方法[J]. 中国图象图形学报, 2004, 9(2):159-163.(LIN K Y,XU L H,WU J H. A fast fuzzy C-means clustering for color image segmentation[J]. Journal of Image and Graphics,2004,9(2):159-163.) [28] 淦文燕, 李德毅, 王建民. 一种基于数据场的层次聚类方法[J]. 电子学报, 2006, 34(2):258-262.(GAN W Y,LI D Y,WANG J M. Hierarchical clustering method based on data field[J]. Acta Electronica Sinica,2006,34(2):258-262.) [29] 王惠文, 孟洁. 多元线性回归的预测建模方法[J]. 北京航空航天大学学报, 2007, 33(4):500-504.(WANG H W,MENG J. Predictive modeling on multivariate linear regression[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(4):500-504.) [30] YANG Y,CHEN W. Taiga:performance optimization of the C4.5 decision tree construction algorithm[J]. Tsinghua Science and Technology,2016,21(4):415-425. [31] SEIN M, 傅顺开, 吕天依, 等. 一般贝叶斯网络分类器及其学习算法[J]. 计算机应用研究, 2016, 33(5):1327-1334.(SEIN M, FU S K,LYU T Y,et al. Algorithm for exact recovery of Bayesiannetwork for classification[J]. Application Research of Computers,2016,33(5):1327-1334.) [32] SEUNG H S,OPPER M,SOMPOLINSKY H. Query bycommittee[C]//Proceedings of the 19925th Annual Workshop on Computational Learning Theory. New York:ACM, 1992:287-294. [33] WANG M,FU K,MIN F. Active learning through two-stage clustering[C]//Proceedings of the 2018 IEEE International Conference on Fuzzy Systems. Piscataway:IEEE,2018:1-7. |