| 1 | 于蒙, 何文涛, 周绪川, 等. 推荐系统综述[J]. 计算机应用, 2022, 42( 6): 1898- 1913. | 
																													
																						|  | YU M, HE W T, ZHOU X C, et al. Review of recommender system [J]. Journal of Computer Applications, 2022, 42( 6): 1898- 1913. | 
																													
																						| 2 | MU R H. A survey of recommender systems based on deep learning[J]. IEEE Access, 2018, 6: 69009- 69022.  10.1109/access.2018.2880197 | 
																													
																						| 3 | 田添星. 评论情感分析增强的深度推荐模型[J]. 计算机应用与软件, 2022, 39( 8): 258- 264.  10.3969/j.issn.1000-386x.2022.08.038 | 
																													
																						|  | TIAN T X. Comment sentiment analysis enhanced deep recommendation model [J]. Computer Applications and Software, 2022, 39( 8): 258- 264.  10.3969/j.issn.1000-386x.2022.08.038 | 
																													
																						| 4 | BOZANTA A, KUTLU B. HybRecSys: content-based contextual hybrid venue recommender system[J]. Journal of Information Science, 2019, 45( 2): 212- 226.  10.1177/0165551518786678 | 
																													
																						| 5 | LI X F, LI D. An improved collaborative filtering recommendation algorithm and recommendation strategy[J]. Mobile Information Systems, 2019, 2019( 13): No. 3560968.  10.1155/2019/3560968 | 
																													
																						| 6 | CENA F, CONSOLE L, VERNERO F. Logical foundations of knowledge-based recommender systems: a unifying spectrum of alternatives[J]. Information Sciences, 2021, 546( 1): 60- 73.  10.1016/j.ins.2020.07.075 | 
																													
																						| 7 | YOO H, CHUNG K. Deep learning-based evolutionary recommendation model for heterogeneous big data integration[J]. KSII Transactions on Internet and Information Systems, 2020, 14( 9): 3730- 3744.  10.3837/tiis.2020.09.009 | 
																													
																						| 8 | YU H T, GAO R B, WANG K, et al. A novel robust recommendation method based on kernel matrix factorization[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32( 3): 2101- 2109.  10.3233/jifs-161705 | 
																													
																						| 9 | 田震, 潘腊梅, 王睿, 等. 深度矩阵分解推荐算法[J]. 软件学报, 2021, 32( 12): 3917- 3928. | 
																													
																						|  | TIAN Z, PAN L M, WANG R, et al. Deep matrix factorization recommendation algorithm [J]. Journal of Software, 2020. 32 ( 12): 3917- 3928. | 
																													
																						| 10 | ZHANG Y F, CHEN X. Explainable recommendation: a survey and new perspectives[J]. Foundations and Trends in Information Retrieval, 2020, 14( 1): 1- 101.  10.1561/1500000066 | 
																													
																						| 11 | RAWAT S, TYAGI U, SINGHAL S. Recommender systems in e-commerce and their challenges[C]// Proceedings of the 2021 3rd International Conference on Advances in Computing, Communication Control and Networking. Piscataway: IEEE, 2021: 1598- 1601.  10.1109/icac3n53548.2021.9725681 | 
																													
																						| 12 | ROY A, BANERJEE S, SARKAR M, et al. Exploring new vista of intelligent collaborative filtering: a restaurant recommendation paradigm[J]. Journal of Computational Science, 2018, 27( 1): 168- 182.  10.1016/j.jocs.2018.05.012 | 
																													
																						| 13 | XIAO J, YE H, HE X, et, al. Attentional factorization machines: learning the weight of feature interactions via attention networks [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2017: 3119- 3125.  10.24963/ijcai.2017/435 | 
																													
																						| 14 | TAO Y Y, JIA Y L, WANG N, et al. The FacT: taming latent factor models for explainability with factorization trees[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Infromation Retrieval. New York: ACM, 2019: 295- 304.  10.1145/3331184.3331244 | 
																													
																						| 15 | GAO J Y, WANG X T, WANG Y S, et al. Explainable recommendation through attentive multi-view learning[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 3622- 3629.  10.1609/aaai.v33i01.33013622 | 
																													
																						| 16 | COSTA F, OUYANG S, DOLOG P, et al. Automatic generation of natural language explanations [C]// Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion. New York: ACM, 2018: No.57.  10.1145/3180308.3180366 | 
																													
																						| 17 | LI P J, WANG Z H, REN Z C, et al. Neural rating regression with abstractive tips generation for recommendation[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 345- 354.  10.1145/3077136.3080822 | 
																													
																						| 18 | LU Y C, DONG R H, SMYTH B. Why I like it: multi-task learning for recommendation and explanation[C]// Proceedings of the RecSys 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 4- 12.  10.1145/3240323.3240365 | 
																													
																						| 19 | SEO S, HUANG J, YANG H, et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction[C]// Proceedings of the 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 297- 305.  10.1145/3109859.3109890 | 
																													
																						| 20 | CHANG C, MIN Z, LIU Y Q, et al. Neural attentional rating regression with review-level explanations[C]// Proceedings of the 27th International World Wide Web Conference. New York: ACM, 2018: 1583- 1592.  10.1145/3178876.3186070 | 
																													
																						| 21 | LIU S, DEMIREL M F, LIANG Y. N-gram graph: simple unsupervised representation for graphs with applications to molecules[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systerms. Red Hook, NY: Curran Associates Inc., 2019: 8466- 8478. | 
																													
																						| 22 | JI S, SATISH N, LI S, et al. Parallelizing Word2Vec in shared and distributed memory[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 30( 6): 2090- 2100.  10.1109/tpds.2019.2904058 | 
																													
																						| 23 | 陶文彬, 钱育蓉, 张伊扬, 等. 基于自编码器的深度聚类算法综述[J]. 计算机工程与应用, 2022, 58( 18): 16- 25.  10.3778/j.issn.1002-8331.2204-0049 | 
																													
																						|  | TAO W B, QIAN Y R, ZHANG Y Y, et al. Survey of deep clustering algorithms based on autoencoder [J] Computer Engineering and Applications, 2022, 58( 18): 16- 25.  10.3778/j.issn.1002-8331.2204-0049 | 
																													
																						| 24 | CHO K, VAN MERRIËNBOER B, GU̇LÇEHRE Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1724- 1734.  10.3115/v1/d14-1179 | 
																													
																						| 25 | 梁志贞, 张磊. 面向Kullback-Leibler散度不确定集的正则化线性判别分析[J]. 自动化学报, 2022, 48( 4): 1033- 1047.  10.16383/j.aas.c210434 | 
																													
																						|  | LIANG Z Z, ZHANG L. Regularized linear discriminant analysis based on uncertainty sets from Kullback-Leibler divergence[J]. Acta Automatica Sinica, 2022, 48( 4): 1033- 1047.  10.16383/j.aas.c210434 | 
																													
																						| 26 | SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]// Proceedings of the 20th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2007: 1257- 1264.  10.1145/1390156.1390267 | 
																													
																						| 27 | 陈佩武, 束方兴. 基于SVD++隐语义模型的信任网络推荐算法[J]. 大数据, 2021, 7( 4): 105- 116.  10.11959/issn.2096-0271.2021041 | 
																													
																						|  | CHEN P W, SHU F X. A recommender algorithm based on SVD++ model under trust network[J]. Big Data Research, 2021, 7( 4): 105- 116.  10.11959/issn.2096-0271.2021041 | 
																													
																						| 28 | ZHENG L, NOROOZI V, YU P S. Joint deep modeling of users and items using reviews for recommendation[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. New York: ACM, 2017: 425- 434.  10.1145/3018661.3018665 | 
																													
																						| 29 | WANG X, HE X N, FENG F L, et al. TEM: tree-enhanced embedding model for explainable recommendation[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee, 2018: 1543- 1552.  10.1145/3178876.3186066 | 
																													
																						| 30 | DENG Z H, HUANG L, WANG C D, et al. DeepCF: a unified framework of representation learning and matching functionlearning in recommender system[C]// Proceedings of the 2019 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 61- 68.  10.1609/aaai.v33i01.330161 | 
																													
																						| 31 | CHEN X, ZHANG Y F, QIN Z. Dynamic explainable recommendation based on neural attentive models[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 53- 60.  10.1609/aaai.v33i01.330153 |