《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (7): 2091-2099.DOI: 10.11772/j.issn.1001-9081.2022071095
所属专题: 第39届CCF中国数据库学术会议(NDBC 2022)
• 第39届CCF中国数据库学术会议(NDBC 2022) • 上一篇 下一篇
收稿日期:
2022-07-12
修回日期:
2022-08-04
接受日期:
2022-08-16
发布日期:
2023-07-20
出版日期:
2023-07-10
通讯作者:
潘庆先
作者简介:
潘亚楠(1997—),女,山东济南人,硕士研究生,CCF会员,主要研究方向:机器学习、群智感知;基金资助:
Yanan PAN, Qingxian PAN(), Zhaoyi YU, Jiajing CHU, Song YU
Received:
2022-07-12
Revised:
2022-08-04
Accepted:
2022-08-16
Online:
2023-07-20
Published:
2023-07-10
Contact:
Qingxian PAN
About author:
PAN Yanan, born in 1997, M. S. candidate. Her research interests include machine learning, crowd sensing.Supported by:
摘要:
在实时、复杂的网络环境中,如何激励工人参与任务并得到高质量的感知数据是时空众包研究的重点。基于此,提出一种基于质量感知的时空众包在线激励机制。首先,为了适应时空众包实时性的特点,提出一种阶段性在线选择工人算法(POA),该算法在预算约束下将整个众包活动周期分为多个阶段,每个阶段在线选择工人;其次,为了提高质量预估的精度与效率,提出一种改进的最大期望(IEM)算法,该算法在算法迭代的过程中优先考虑可信度高的工人提交的任务结果;最后,通过真实数据集上的对比实验,验证了所提激励机制在提高平台效用方面的有效性。实验结果表明,POA相较于改进的两阶段拍卖(ITA)算法、多属性与两阶段相结合的拍卖(M-ITA)算法,以及L-VCG(Lyapunov-based Vickrey-Clarke-Groves)等拍卖算法,效率平均提高了11.11%,工人的额外奖励金额平均提升了12.12%,可以激励工人向冷门偏远地区移动;在质量预估方面,IEM算法相比其他质量预估算法,在精度和效率上分别平均提高了5.06%和14.2%。
中图分类号:
潘亚楠, 潘庆先, 于兆一, 褚佳静, 于嵩. 时空众包中基于质量感知的在线激励机制[J]. 计算机应用, 2023, 43(7): 2091-2099.
Yanan PAN, Qingxian PAN, Zhaoyi YU, Jiajing CHU, Song YU. Online incentive mechanism based on quality perception in spatio-temporal crowdsourcing[J]. Journal of Computer Applications, 2023, 43(7): 2091-2099.
参数 | 设置 |
---|---|
B | 500,1 000,1 500,2 000 |
ri | (0,1) |
ρ | 1 |
λ1+λ2+λ3 | 1 |
β | 8 |
表1 实验参数设置
Tab. 1 Setting of experimental parameters
参数 | 设置 |
---|---|
B | 500,1 000,1 500,2 000 |
ri | (0,1) |
ρ | 1 |
λ1+λ2+λ3 | 1 |
β | 8 |
数据集 | 任务类别 | 任务选项 | 任务数 |
---|---|---|---|
Adult2 | 标记网站 | 4 | 333 |
Duck | 识别图像 | 2 | 39 |
LabelMe | 注释图像 | 8 | 2 688 |
表2 数据集信息
Tab. 2 Datasets information
数据集 | 任务类别 | 任务选项 | 任务数 |
---|---|---|---|
Adult2 | 标记网站 | 4 | 333 |
Duck | 识别图像 | 2 | 39 |
LabelMe | 注释图像 | 8 | 2 688 |
工作者 | 历史信息 |
---|---|
w1 | (0.87,0.82,0.92,0.87,0.92,0.9,0.95,0.87,0.9, 0.92,0.9,0.92) |
w2 | (1,0.87,0.9) |
w3 | (0.92,0.97,0.85,0.92,0.95,0.9,0.97) |
w4 | (0.85,0.92,0.9,0.95,1) |
w5 | (1,0.85,0.9,0.92,0.72,0.825) |
w6 | (0.75,0.82,0.9) |
w7 | (0.84,0.89) |
表3 工人历史信息
Tab. 3 Workers’ history information
工作者 | 历史信息 |
---|---|
w1 | (0.87,0.82,0.92,0.87,0.92,0.9,0.95,0.87,0.9, 0.92,0.9,0.92) |
w2 | (1,0.87,0.9) |
w3 | (0.92,0.97,0.85,0.92,0.95,0.9,0.97) |
w4 | (0.85,0.92,0.9,0.95,1) |
w5 | (1,0.85,0.9,0.92,0.72,0.825) |
w6 | (0.75,0.82,0.9) |
w7 | (0.84,0.89) |
1 | 秦海燕,章永龙,李斌.社会网络下分配众包任务的真实机制[J].计算机应用, 2020, 40(10): 3019-3024. 10.11772/j.issn.1001-9081.2020020174 |
QIN H Y, ZHANG Y L, LI B. Truthful mechanism for crowdsourcing task assignment in social network[J]. Journal of Computer Applications, 2020, 40(10): 3019-3024. 10.11772/j.issn.1001-9081.2020020174 | |
2 | PAN Q X, PAN T W, DONG H B, et al. Research on task assignment to minimize travel cost for spatio-temporal crowdsourcing[J]. EURASIP Journal on Wireless Communications and Networking, 2021, 2021: No.59. 10.1186/s13638-021-01909-3 |
3 | 冉家敏,倪志伟,彭鹏,等.考虑空间众包工作者服务质量的任务分配策略及其萤火虫群优化算法求解[J].计算机应用, 2021, 41(3): 794-802. 10.11772/j.issn.1001-9081.2020060940 |
RAN J M, NI Z W, PENG P, et al. Task allocation strategy considering service quality of spatial crowdsourcing workers and its glowworm swarm optimization algorithm solution[J]. Journal of Computer Applications, 2021, 41(3): 794-802. 10.11772/j.issn.1001-9081.2020060940 | |
4 | ZHAO D, MA H D, JI X N. Generalized lottery trees: budget-balanced incentive tree mechanisms for crowdsourcing[J]. IEEE Transactions on Mobile Computing, 2021, 20(7): 2379-2394. 10.1109/tmc.2020.2979459 |
5 | SHI Z G, YANG G, GONG X W, et al. Quality-aware incentive mechanisms under social influences in data crowdsourcing[J]. IEEE/ACM Transactions on Networking, 2022, 30(1): 176-189. 10.1109/tnet.2021.3105427 |
6 | SUN Z C, WANG Y J, CAI Z P, et al. A two-stage privacy protection mechanism based on blockchain in mobile crowdsourcing[J]. International Journal of Intelligent Systems, 2021, 36(5): 2058-2080. 10.1002/int.22371 |
7 | 霍峥,张坤,贺萍,等.满足本地化差分隐私的众包位置数据采集[J].计算机应用, 2019, 39(3): 763-768. 10.11772/j.issn.1001-9081.2018071541 |
HUO Z, ZHANG K, HE P, et al. Crowdsourcing location data collection for local differential privacy[J]. Journal of Computer Applications, 2019, 39(3): 763-768. 10.11772/j.issn.1001-9081.2018071541 | |
8 | WANG Y J, GAO Y, LI Y S, et al. A worker-selection incentive mechanism for optimizing platform-centric mobile crowdsourcing systems[J]. Computer Networks, 2020, 107: No.107144. 10.1016/j.comnet.2020.107144 |
9 | GAO L P, JIN T, LU C. A long-term quality perception incentive strategy for crowdsourcing environments with budget constraints[J]. International Journal of Cooperative Information Systems, 2020, 29(1/2): No.2040005. 10.1142/s0218843020400055 |
10 | WANG Y J, CAI Z P, ZHAN Z H, et al. An optimization and auction based incentive mechanism to maximize social welfare for mobile crowdsourcing[J]. IEEE Transactions on Computational Social Systems, 2019, 6(3): 414-429. 10.1109/tcss.2019.2907059 |
11 | WANG Y J, CAI Z P, YIN G S, et al. An incentive mechanism with privacy protection in mobile crowdsourcing systems[J]. Computer Networks, 2016, 102: 157-171. 10.1016/j.comnet.2016.03.016 |
12 | ZHAO D, LI X Y, MA H D. Budget-feasible online incentive mechanisms for crowdsourcing tasks truthfully[J]. IEEE/ACM Transactions on Networking, 2016, 24(2): 647-661. 10.1109/tnet.2014.2379281 |
13 | 胡颖.群智感知网络中移动众包的激励机制研究[D].烟台:烟台大学, 2020: 19-41. |
HU Y. Research on incentive mechanism of mobile crowd sourcing in crowd sensing networks[D]. Yantai: Yantai University, 2020: 19-41 | |
14 | LUO T, TAN H P, XIA L R. Profit-maximizing incentive for participatory sensing [C]// Proceedings of the 2014 IEEE Conference on Computer Communications. Piscataway: IEEE, 2014: 127-135. 10.1109/infocom.2014.6847932 |
15 | GAO L, HOU F, HUANG J W. Providing long-term participation incentive in participatory sensing [C]// Proceedings of the 2015 IEEE Conference on Computer Communications. Piscataway: IEEE, 2015: 2803-2811. 10.1109/infocom.2015.7218673 |
16 | WANG Y J, CAI Z P, ZHAN Z H, et al. Walrasian equilibrium-based multiobjective optimization for task allocation in mobile crowdsourcing[J]. IEEE Transactions on Computational Social Systems, 2020, 7(4): 1033-1046. 10.1109/tcss.2020.2995760 |
17 | QUOC VIET HUNG N, TAM N T, TRAN L N, et al. An evaluation of aggregation techniques in crowdsourcing [C]// Proceedings of the 2013 International Conference on Web Information Systems Engineering, LNCS 8181. Berlin: Springer, 2013: 1-15. |
18 | 高丽萍,孙明达,高丽,等.移动众包环境下一种多阶段质量感知的在线激励机制[J].小型微型计算机系统, 2022, 43(5): 1102-1108. |
GAO L P, SUN M D, GAO L, et al. Online incentive mechanism of multi-stage quality perception in mobile crowdsourcing environment[J]. Journal of Chinese Computer Systems, 2022, 43(5): 1102-1108. | |
19 | 仲秋雁,刘志娟.考虑工作者信誉的众包质量EM评估方法[J].科技管理研究, 2018, 38(21): 70-76. 10.3969/j.issn.1000-7695.2018.21.010 |
ZHONG Q Y, LIU Z J. EM evaluation method of crowdsourcing quality considering the reputation of workers[J]. Science and Technology Management Research, 2018, 38(21): 70-76. 10.3969/j.issn.1000-7695.2018.21.010 | |
20 | WHITEHILL J, RUVOLO P, WU T F, et al. Whose vote should count more: optimal integration of labels from labelers of unknown expertise [C]// Proceedings of the 22nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2009: 2035-2043. |
21 | LI H W, YU B. Error rate bounds and iterative weighted majority voting for crowdsourcing[EB/OL]. (2014-11-15) [2022-05-33]. . 10.1016/j.ins.2022.05.066 |
22 | CELEUX G, GOVAERT G. A classification EM algorithm for clustering and two stochastic versions[J]. Computational Statistics and Data Analysis, 1992, 14(3): 315-332. 10.1016/0167-9473(92)90042-e |
23 | DAWID A P, SKENE A M. Maximum likelihood estimation of observer error-rates using the EM algorithm[J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 1979, 28(1): 20-28. 10.2307/2346806 |
24 | ZHENG C Z. High bids and broke winners[J]. Journal of Economic Theory, 2001, 100(1): 129-171. 10.1006/jeth.2000.2715 |
25 | BATENI M, HAJIAGHAYI M, ZADIMOGHADDAM M. Submodular secretary problem and extensions[J]. ACM Transactions on Algorithms, 2013, 9(4): No.32. 10.1145/2500121 |
26 | IPEIROTIS P G, PROVOST F, WANG J. Quality management on Amazon Mechanical Turk [C]// Proceedings of the 2010 ACM SIGKDD Workshop on Human Computation. New York: ACM, 2010: 64-67. 10.1145/1837885.1837906 |
27 | WELINDER P, BRANSON S, BELONGIE S, et al. The multidimensional wisdom of crowds [C]// Proceedings of the 23rd International Conference on Neural Information Processing Systems — Volume 2. Red Hook, NY: Curran Associates Inc., 2010: 2424-2432. |
28 | RODRIGUES F, LOURENÇO M, RIBEIRO B, et al. Learning supervised topic models for classification and regression from crowds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2409-2422. 10.1109/tpami.2017.2648786 |
[1] | 陈廷伟, 张嘉诚, 王俊陆. 面向联邦学习的随机验证区块链构建[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2770-2776. |
[2] | 余孙婕, 曾辉, 熊诗雨, 史红周. 基于生成式对抗网络的联邦学习激励机制[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 344-352. |
[3] | 张佩瑶, 付晓东. 防恶意竞价的众包多任务分配激励机制[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 261-268. |
[4] | 耿方兴, 李卓, 陈昕. 基于多领导者Stackelberg博弈的分层联邦学习激励机制设计[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3551-3558. |
[5] | 李从东, 黄浩, 张帆顺. 基于演化博弈的领先用户知识共享行为激励机制[J]. 计算机应用, 2021, 41(6): 1785-1791. |
[6] | 巫光福, 王影军. 基于区块链与云-边缘计算混合架构的车联网数据安全存储与共享方案[J]. 计算机应用, 2021, 41(10): 2885-2892. |
[7] | 聂茜婵, 张阳, 余敦辉, 张兴盛. 面向全局优化的时空众包任务分配算法[J]. 计算机应用, 2020, 40(7): 1950-1958. |
[8] | 余敦辉, 袁旭, 张万山, 王晨旭. 基于动态阈值的时空众包在线分配算法[J]. 计算机应用, 2020, 40(3): 658-664. |
[9] | 陈秀华, 刘慧, 熊金波, 马蓉. 移动群智感知中面向任务需求的用户选择激励机制[J]. 计算机应用, 2019, 39(8): 2310-2317. |
[10] | 张兴盛, 余敦辉, 张万山, 王晨旭. 时空众包环境下时效均衡的在线任务分配算法[J]. 计算机应用, 2019, 39(5): 1357-1363. |
[11] | 刘辉, 李盛恩. 时空众包环境下基于统计预测的自适应阈值算法[J]. 计算机应用, 2018, 38(2): 415-420. |
[12] | 王莹洁, 蔡志鹏, 童向荣, 潘庆先, 高洋, 印桂生. 基于声誉的移动众包系统的在线激励机制[J]. 计算机应用, 2016, 36(8): 2121-2127. |
[13] | 朱旋, 杨麦顺, 安健, 向乐乐, 杨蔷薇. 群智感知中基于反拍卖模型的众包激励方法[J]. 计算机应用, 2016, 36(7): 2038-2045. |
[14] | 刘大福, 苏旸, 谢洪安, 杨凯. 电子商务中客户评价策略选择的演化博弈分析[J]. 计算机应用, 2016, 36(12): 3269-3273. |
[15] | 宋伟 余强 彭军 孙庆中. 基于歧视性的第二价格拍卖算法的激励机制[J]. 计算机应用, 2014, 34(11): 3147-3151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||