| 1 | 谭作文,张连福. 机器学习隐私保护研究综述[J]. 软件学报, 2020, 31(7):2127-2156.  10.13328/j.cnki.jos.006052 | 
																													
																						|  | TAN Z W, ZHANG L F. Survey on privacy preserving techniques for machine learning[J]. Journal of Software, 2020, 31(7): 2127-2156.  10.13328/j.cnki.jos.006052 | 
																													
																						| 2 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017:1273-1282. | 
																													
																						| 3 | ABAD M S H, OZFATURA E, GÜNDÜZ D, et al. Hierarchical federated learning across heterogeneous cellular networks[C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 8866-8870.  10.1109/icassp40776.2020.9054634 | 
																													
																						| 4 | TU X, ZHU K, LUONG N C, et al. Incentive mechanisms for federated learning: from economic and game theoretic perspective[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(3): 1566-1593.  10.1109/tccn.2022.3177522 | 
																													
																						| 5 | TIAN M, CHEN Y, LIU Y, et al. A contract theory based incentive mechanism for federated learning[EB/OL]. (2021-08-12) [2022-08-10]..  10.1007/978-3-031-11748-0_6 | 
																													
																						| 6 | YU H, LIU Z, LIU Y, et al. A fairness-aware incentive scheme for federated learning[C]// Proceedings of the 2020 AAAI/ACM Conference on AI, Ethics, and Society. New York: ACM, 2020: 393-399.  10.1145/3375627.3375840 | 
																													
																						| 7 | ZENG R, ZHANG S, WANG J, et al. FMore: an incentive scheme of multi-dimensional auction for federated learning in MEC[C]// Proceedings of the IEEE 40th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2020: 278-288.  10.1109/icdcs47774.2020.00094 | 
																													
																						| 8 | 李从东,黄浩,张帆顺. 基于演化博弈的领先用户知识共享行为激励机制[J]. 计算机应用, 2021, 41(6):1785-1791.  10.11772/j.issn.1001-9081.2020091449 | 
																													
																						|  | LI C D, HUANG H, ZHANG F S. Knowledge sharing behavior incentive mechanism for lead users based on evolutionary game[J]. Journal of Computer Applications, 2021, 41(6): 1785-1791.  10.11772/j.issn.1001-9081.2020091449 | 
																													
																						| 9 | CHEN Y, ZHANG Y, WANG S, et al. DIM-DS: dynamic incentive model for data sharing in federated learning based on smart contracts and evolutionary game theory[J]. IEEE Internet of Things Journal, 2022, 9(23): 24572-24584.  10.1109/jiot.2022.3191671 | 
																													
																						| 10 | ZOU Y, FENG S, NIYATO D, et al. Mobile device training strategies in federated learning: an evolutionary game approach[C]// Proceedings of the 2019 IEEE International Conference on Internet of Things/ Green Computing and Communications/ Cyber, Physical and Social Computing/ Smart Data. Piscataway: IEEE, 2019: 874-879.  10.1109/ithings/greencom/cpscom/smartdata.2019.00157 | 
																													
																						| 11 | 王月平,徐涛. 基于演化博弈的用户接入机制[J]. 计算机应用, 2020, 40(5):1392-1396.  10.11772/j.issn.1001-9081.2019112024 | 
																													
																						|  | WANG Y P, XU T. User association mechanism based on evolutionary game[J]. Journal of Computer Applications, 2020, 40(5): 1392-1396.  10.11772/j.issn.1001-9081.2019112024 | 
																													
																						| 12 | LIM W Y B, NG J S, XIONG Z, et al. Dynamic edge association and resource allocation in self-organizing hierarchical federated learning networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(12): 3640-3653.  10.1109/jsac.2021.3118401 | 
																													
																						| 13 | FENG S, NIYATO D, WANG P, et al. Joint service pricing and cooperative relay communication for federated learning[C]// Proceedings of the 2019 IEEE International Conference on Internet of Things/ Green Computing and Communications/ Cyber, Physical and Social Computing/ Smart Data. Piscataway: IEEE, 2019: 815-820.  10.1109/ithings/greencom/cpscom/smartdata.2019.00148 | 
																													
																						| 14 | XIAO G, XIAO M, GAO G, et al. Incentive mechanism design for federated learning: a two-stage Stackelberg game approach[C]// Proceedings of the IEEE 26th International Conference on Parallel and Distributed Systems. Piscataway: IEEE, 2020: 148-155.  10.1109/icpads51040.2020.00029 | 
																													
																						| 15 | KHAN L U, PANDEY S R, TRAN N H, et al. Federated learning for edge networks: resource optimization and incentive mechanism[J]. IEEE Communications Magazine, 2020, 58(10): 88-93.  10.1109/mcom.001.1900649 | 
																													
																						| 16 | NIE J, LUO J, XIONG Z, et al. A Stackelberg game approach toward socially-aware incentive mechanisms for mobile crowdsensing[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 724-738.  10.1109/twc.2018.2885747 | 
																													
																						| 17 | SU Y, FAN W, LIU Y, et al. Game-based pricing and task offloading in mobile edge computing enabled edge-cloud systems[EB/OL]. (2021-01-14) [2022-08-10]..  10.1016/j.comnet.2021.108523 | 
																													
																						| 18 | ZHAN Y, LI P, QU Z, et al. A learning-based incentive mechanism for federated learning[J]. IEEE Internet of Things Journal, 2020, 7(7): 6360-6368.  10.1109/jiot.2020.2967772 | 
																													
																						| 19 | GONG X, DUAN L, CHEN X, et al. When social network effect meets congestion effect in wireless networks: data usage equilibrium and optimal pricing[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(2): 449-462.  10.1109/jsac.2017.2659059 | 
																													
																						| 20 | HAN Z, NIYATO D, SAAD W, et al. Game Theory in Wireless and Communication Networks: Theory, Models, and Applications[M]. Cambridge: Cambridge University Press, 2012: 139-143.  10.1017/cbo9780511895043 | 
																													
																						| 21 | HOFBAUER J, SIGMUND K. Evolutionary game dynamics[J]. Bulletin of the American Mathematical Society, 2003, 40(4): 479-519.  10.1090/s0273-0979-03-00988-1 | 
																													
																						| 22 | GAO X, FENG S, NIYATO D, et al. Dynamic access point and service selection in backscatter-assisted RF-powered cognitive networks[J]. IEEE Internet of Things Journal, 2019, 6(5): 8270-8283.  10.1109/jiot.2019.2923566 | 
																													
																						| 23 | PEJÓ B, TANG Q, BICZÓK G. Together or alone: the price of privacy in collaborative learning[EB/OL]. [2022-08-10]..  10.2478/popets-2019-0019 | 
																													
																						| 24 | WENG J, WENG J, HUANG H, et al. FedServing: a federated prediction serving framework based on incentive mechanism[C]// Proceedings of the 2021 IEEE Conference on Computer Communications. Piscataway: IEEE, 2021: 1-10.  10.1109/infocom42981.2021.9488807 | 
																													
																						| 25 | GONDZIO J. Interior point methods 25 years later[J]. European Journal of Operational Research, 2012, 218(3): 587-601.  10.1016/j.ejor.2011.09.017 | 
																													
																						| 26 | LENG Y, WANG M, MA B, et al. A game-based scheme for resource purchasing and pricing in MEC for Internet of Things[J]. Security and Communication Networks, 2021, 2021: No.1951141.  10.1155/2021/1951141 | 
																													
																						| 27 | DENG Y, LYU F, REN J, et al. Improving federated learning with quality-aware user incentive and auto-weighted model aggregation[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(12): 4515-4529.  10.1109/tpds.2022.3195207 | 
																													
																						| 28 | ZHAN Y, ZHANG J, HONG Z, et al. A survey of incentive mechanism design for federated learning[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 1035-1044. |