《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (7): 1995-2003.DOI: 10.11772/j.issn.1001-9081.2023101395
收稿日期:
2023-10-17
修回日期:
2024-01-18
接受日期:
2024-01-24
发布日期:
2024-03-08
出版日期:
2024-07-10
通讯作者:
赵杰煜
作者简介:
王清(1999—),女,江西上饶人,硕士研究生,CCF会员,主要研究方向:子空间聚类、小样本学习;基金资助:
Qing WANG, Jieyu ZHAO(), Xulun YE, Nongxiao WANG
Received:
2023-10-17
Revised:
2024-01-18
Accepted:
2024-01-24
Online:
2024-03-08
Published:
2024-07-10
Contact:
Jieyu ZHAO
About author:
WANG Qing, born in 1999, M. S. candidate. Her research interests include subspace clustering, few-shot learning.Supported by:
摘要:
深度子空间聚类是一种处理高维数据聚类任务的有效方法。然而,现有的深度子空间聚类方法通常将自表示学习和指标学习作为两个独立的过程,导致在处理具有挑战性的数据时,固定的自表示矩阵会导致次优的聚类结果;另外,自表示矩阵的质量对聚类结果的准确性至关重要。针对上述问题,提出一种统一框架的增强深度子空间聚类方法。首先,通过将特征学习、自表示学习和指标学习集成在一起同时优化所有参数,根据数据的特征动态地学习自表示矩阵,确保准确地捕捉数据特征;其次,为了提高自表示学习的效果,提出类原型伪标签学习,为特征学习和指标学习提供自监督信息,进而促进自表示学习;最后,为了增强嵌入表示的判别能力,引入正交性约束帮助实现自表示属性。实验结果表明,与AASSC (Adaptive Attribute and Structure Subspace Clustering network)相比,所提方法在MNIST、UMIST、COIL20数据集上的聚类准确率分别提升了1.84、0.49、0.34个百分点。可见,所提方法提高了自表示矩阵学习的准确性,聚类效果更好。
中图分类号:
王清, 赵杰煜, 叶绪伦, 王弄潇. 统一框架的增强深度子空间聚类方法[J]. 计算机应用, 2024, 44(7): 1995-2003.
Qing WANG, Jieyu ZHAO, Xulun YE, Nongxiao WANG. Enhanced deep subspace clustering method with unified framework[J]. Journal of Computer Applications, 2024, 44(7): 1995-2003.
符号 | 描述 | 符号 | 描述 |
---|---|---|---|
X | 输入数据 | G,H | 自表示学习模块和指标学习模块 |
Q | 伪标签矩阵 | n,k | 输入数据的个数和类别数 |
N | 近邻矩阵 | C, W | 自表示矩阵和亲和矩阵 |
E和D的参数 | 更新后的自表示矩阵和亲和矩阵 | ||
G和H的参数 | 控制自表示矩阵的超参数 | ||
Z | 隐空间表示 | B | 高置信度样本集合 |
重建输入 | 每个类的类原型 | ||
S | 指标嵌入矩阵 | E,D | 编码器和解码器 |
I | 单位矩阵 | 平衡参数 |
表1 符号描述
Tab. 1 Notations and descriptions
符号 | 描述 | 符号 | 描述 |
---|---|---|---|
X | 输入数据 | G,H | 自表示学习模块和指标学习模块 |
Q | 伪标签矩阵 | n,k | 输入数据的个数和类别数 |
N | 近邻矩阵 | C, W | 自表示矩阵和亲和矩阵 |
E和D的参数 | 更新后的自表示矩阵和亲和矩阵 | ||
G和H的参数 | 控制自表示矩阵的超参数 | ||
Z | 隐空间表示 | B | 高置信度样本集合 |
重建输入 | 每个类的类原型 | ||
S | 指标嵌入矩阵 | E,D | 编码器和解码器 |
I | 单位矩阵 | 平衡参数 |
数据集 | 类别数 | 样本数 | 维度 |
---|---|---|---|
MNIST | 10 | 1 000 | 28×28 |
ORL | 40 | 400 | 32×32 |
UMIST | 20 | 480 | 32×32 |
COIL20 | 20 | 1 440 | 32×32 |
COIL40 | 40 | 2 880 | 32×32 |
表2 基准数据集统计信息
Tab. 2 Statistics of benchmark datasets
数据集 | 类别数 | 样本数 | 维度 |
---|---|---|---|
MNIST | 10 | 1 000 | 28×28 |
ORL | 40 | 400 | 32×32 |
UMIST | 20 | 480 | 32×32 |
COIL20 | 20 | 1 440 | 32×32 |
COIL40 | 40 | 2 880 | 32×32 |
数据集 | Encoder | C | Decoder |
---|---|---|---|
COIL20 | |||
COIL40 |
表3 COIL20和COIL40的网络架构
Tab. 3 Network architectures for COIL20 and COIL40
数据集 | Encoder | C | Decoder |
---|---|---|---|
COIL20 | |||
COIL40 |
数据集 | Encoder | C | Decoder | ||||||
---|---|---|---|---|---|---|---|---|---|
MNIST | |||||||||
ORL | |||||||||
UMIST |
表4 MNIST、ORL和UMIST的网络架构
Tab. 4 Network architectures for MNIST, ORL and UMIST
数据集 | Encoder | C | Decoder | ||||||
---|---|---|---|---|---|---|---|---|---|
MNIST | |||||||||
ORL | |||||||||
UMIST |
分类 | 方法 | ACC | NMI |
---|---|---|---|
传统浅层方法 | LRR | 53.86 | 56.32 |
EDSC | 56.50 | 57.52 | |
KSSC | 52.20 | 56.23 | |
FLSR | 62.10 | 52.31 | |
AGCSC | 72.80 | 67.54 | |
基于深度学习的方法 | DEC | 61.20 | 57.43 |
DSC-Net_L1 | 72.80 | 72.17 | |
DSC-Net_L2 | 75.00 | 73.19 | |
DASC | 80.40 | 78.00 | |
DKM | 53.32 | 50.02 | |
DSCDL | 81.20 | 76.10 | |
DSRSC | 84.80 | 81.94 | |
PSSC | 84.30 | 76.76 | |
AASSC | 84.60 | 76.09 | |
本文方法 | 86.44 | 76.51 |
表5 MNIST上不同方法的ACC和NMI比较 ( %)
Tab. 5 ACC and NMI comparison for different methods on MNIST
分类 | 方法 | ACC | NMI |
---|---|---|---|
传统浅层方法 | LRR | 53.86 | 56.32 |
EDSC | 56.50 | 57.52 | |
KSSC | 52.20 | 56.23 | |
FLSR | 62.10 | 52.31 | |
AGCSC | 72.80 | 67.54 | |
基于深度学习的方法 | DEC | 61.20 | 57.43 |
DSC-Net_L1 | 72.80 | 72.17 | |
DSC-Net_L2 | 75.00 | 73.19 | |
DASC | 80.40 | 78.00 | |
DKM | 53.32 | 50.02 | |
DSCDL | 81.20 | 76.10 | |
DSRSC | 84.80 | 81.94 | |
PSSC | 84.30 | 76.76 | |
AASSC | 84.60 | 76.09 | |
本文方法 | 86.44 | 76.51 |
分类 | 方法 | ORL | UMIST | ||
---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ||
传统浅层方法 | SSC | 74.25 | 84.95 | 69.04 | 74.89 |
EDSC | 70.38 | 77.99 | 69.37 | 75.22 | |
KSSC | 71.43 | 80.70 | 65.31 | 73.77 | |
LRSC | 72.00 | 81.56 | 67.29 | 74.39 | |
SSC-OMP | 71.00 | 79.52 | 64.34 | 70.68 | |
FLSR | 77.75 | 86.61 | — | — | |
CLR2SC | 69.25 | 84.25 | — | — | |
PBDR | 86.40 | 93.20 | — | — | |
基于深度学习的方法 | AE+SSC | 75.63 | 85.55 | 70.42 | 75.15 |
DSC-Net_L1 | 85.00 | 90.23 | 72.42 | 75.56 | |
DSC-Net_L2 | 86.00 | 90.34 | 73.12 | 76.62 | |
DASC | 88.25 | 93.15 | 76.88 | 80.42 | |
DSCDL | — | — | 81.90 | 91.70 | |
DSRSC | 88.50 | 93.52 | — | — | |
PSSC | 86.75 | 93.49 | 79.17 | 86.70 | |
AASSC | 90.75 | 94.31 | 83.54 | 89.02 | |
ARSSC | 75.50 | — | — | — | |
本文方法 | 90.75 | 94.99 | 84.03 | 89.54 |
表6 ORL和UMIST上不同方法的ACC和NMI比较 ( %)
Tab. 6 ACC and NMI comparison for different methods on ORL and UMIST
分类 | 方法 | ORL | UMIST | ||
---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ||
传统浅层方法 | SSC | 74.25 | 84.95 | 69.04 | 74.89 |
EDSC | 70.38 | 77.99 | 69.37 | 75.22 | |
KSSC | 71.43 | 80.70 | 65.31 | 73.77 | |
LRSC | 72.00 | 81.56 | 67.29 | 74.39 | |
SSC-OMP | 71.00 | 79.52 | 64.34 | 70.68 | |
FLSR | 77.75 | 86.61 | — | — | |
CLR2SC | 69.25 | 84.25 | — | — | |
PBDR | 86.40 | 93.20 | — | — | |
基于深度学习的方法 | AE+SSC | 75.63 | 85.55 | 70.42 | 75.15 |
DSC-Net_L1 | 85.00 | 90.23 | 72.42 | 75.56 | |
DSC-Net_L2 | 86.00 | 90.34 | 73.12 | 76.62 | |
DASC | 88.25 | 93.15 | 76.88 | 80.42 | |
DSCDL | — | — | 81.90 | 91.70 | |
DSRSC | 88.50 | 93.52 | — | — | |
PSSC | 86.75 | 93.49 | 79.17 | 86.70 | |
AASSC | 90.75 | 94.31 | 83.54 | 89.02 | |
ARSSC | 75.50 | — | — | — | |
本文方法 | 90.75 | 94.99 | 84.03 | 89.54 |
分类 | 方法 | COIL20 | COIL40 | ||
---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ||
传统浅层方法 | SSC | 86.31 | 88.92 | 71.91 | 82.12 |
LRR | 81.18 | 87.47 | 64.93 | 78.28 | |
EDSC | 83.71 | 88.28 | 68.70 | 81.39 | |
LRSC | 74.16 | 84.52 | 63.27 | 77.37 | |
基于深度学习的方法 | AE+SSC | 87.11 | 89.90 | 73.91 | 83.18 |
DEC | 72.15 | 80.07 | 48.72 | 74.17 | |
DEPICT | 86.18 | 92.66 | 80.73 | 92.91 | |
DSC-Net_L1 | 93.14 | 93.53 | 80.03 | 88.52 | |
DSC-Net_L2 | 93.68 | 94.08 | 80.75 | 89.41 | |
DASC | 96.39 | 96.86 | 83.54 | 91.96 | |
DSRSC | 94.95 | 95.32 | — | — | |
PSSC | 97.22 | 97.79 | 83.58 | 92.58 | |
AASSC | 98.40 | 98.29 | 87.19 | 93.43 | |
本文方法 | 98.74 | 98.97 | 85.13 | 92.67 |
表7 COIL20和COIL40上不同方法的ACC和NMI比较 ( %)
Tab. 7 ACC and NMI comparison for different methods on COIL20 and COIL40
分类 | 方法 | COIL20 | COIL40 | ||
---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ||
传统浅层方法 | SSC | 86.31 | 88.92 | 71.91 | 82.12 |
LRR | 81.18 | 87.47 | 64.93 | 78.28 | |
EDSC | 83.71 | 88.28 | 68.70 | 81.39 | |
LRSC | 74.16 | 84.52 | 63.27 | 77.37 | |
基于深度学习的方法 | AE+SSC | 87.11 | 89.90 | 73.91 | 83.18 |
DEC | 72.15 | 80.07 | 48.72 | 74.17 | |
DEPICT | 86.18 | 92.66 | 80.73 | 92.91 | |
DSC-Net_L1 | 93.14 | 93.53 | 80.03 | 88.52 | |
DSC-Net_L2 | 93.68 | 94.08 | 80.75 | 89.41 | |
DASC | 96.39 | 96.86 | 83.54 | 91.96 | |
DSRSC | 94.95 | 95.32 | — | — | |
PSSC | 97.22 | 97.79 | 83.58 | 92.58 | |
AASSC | 98.40 | 98.29 | 87.19 | 93.43 | |
本文方法 | 98.74 | 98.97 | 85.13 | 92.67 |
方法 | COIL20 | COIL40 | ||
---|---|---|---|---|
ACC | NMI | ACC | NMI | |
w/o | 93.68 | 94.08 | 80.75 | 89.41 |
w/o | 94.26 | 96.47 | 81.59 | 90.86 |
w/o | 96.65 | 95.06 | 83.04 | 91.87 |
本文方法 | 98.74 | 98.97 | 85.13 | 92.67 |
表8 COIL20和COIL40数据集上不同损失函数分量的消融实验结果 ( %)
Tab. 8 Ablation study results with different components of loss function on datasets COIL20 and COIL40
方法 | COIL20 | COIL40 | ||
---|---|---|---|---|
ACC | NMI | ACC | NMI | |
w/o | 93.68 | 94.08 | 80.75 | 89.41 |
w/o | 94.26 | 96.47 | 81.59 | 90.86 |
w/o | 96.65 | 95.06 | 83.04 | 91.87 |
本文方法 | 98.74 | 98.97 | 85.13 | 92.67 |
1 | RAO S, TRON R, VIDAL R, et al. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1832-1845. |
2 | VIDAL R, MA Y, SASTRY S. Generalized Principal Component Analysis (GPCA) [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1945-1959. |
3 | ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. |
4 | PARK S, HAN S, KIM S, et al. Improving unsupervised image clustering with robust learning [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12273-12282. |
5 | CAI J, FAN J, GUO W, et al. Efficient deep embedded subspace clustering [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 21-30. |
6 | LI Z, TANG C, ZHENG X, et al. High-order correlation preserved incomplete multi-view subspace clustering [J]. IEEE Transactions on Image Processing, 2022, 31: 2067-2080. |
7 | LIU S, WANG S, ZHANG P, et al. Efficient one-pass multi-view subspace clustering with consensus anchors [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(7): 7576-7584. |
8 | LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. |
9 | YOU C, LI C-G, ROBINSON D P, et al. Oracle based active set algorithm for scalable elastic net subspace clustering [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3928-3937. |
10 | YOU C, ROBINSON D, VIDAL R. Scalable sparse subspace clustering by orthogonal matching pursuit [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3918-3927. |
11 | MATSUSHIMA S, BRBIC M. Selective sampling-based scalable sparse subspace clustering [C]// Proceedings of the 33 rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, Inc., 2019: 12425-12434. |
12 | HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507. |
13 | ZHOU P, HOU Y, FENG J. Deep adversarial subspace clustering [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1596-1604. |
14 | JI P, ZHANG T, LI H, et al. Deep subspace clustering networks [C]// Proceedings of the 31 st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, Inc., 2017: 23-32. |
15 | 尹明,吴浩杨,谢胜利,等.基于自注意力对抗的深度子空间聚类[J].自动化学报, 2022, 48(1): 271-281. |
YIN M, WU H Y, XIE S L, et al. Self-attention adversarial based deep subspace clustering [J]. Acta Automatica Sinica, 2022, 48(1): 271-281. | |
16 | 李凯,张可心.结构α-熵的加权高斯混合模型的子空间聚类[J].电子学报, 2022, 50(3): 718-725. |
LI K, ZHANG K X. Structural α-entropy weighting Gaussian mixture model for subspace clustering [J]. Acta Electronica Sinica, 2022, 50(3): 718-725. | |
17 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
18 | SAMARIA F S, HARTER A C. Parameterisation of a stochastic model for human face identification [C]// Proceedings of the 1994 IEEE Workshop on Applications of Computer Vision. Piscataway: IEEE, 1994: 138-142. |
19 | GRAHAM D B, ALLINSON N M. Characterising virtual eigensignatures for general purpose face recognition [M]// WECHSLER H, PHILLIPS J P, BRUCE V, et al. Face Recognition: from Theory to Applications, NATO Series 163. Berlin: Springer, 1998: 446-456. |
20 | JI P, SALZMANN M, LI H. Efficient dense subspace clustering [C]// Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2014: 461-468. |
21 | PATEL V M, VIDAL R. Kernel sparse subspace clustering [C]// Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014: 2849-2853. |
22 | MA Z, KANG Z, LUO G, et al. Towards clustering-friendly representations: subspace clustering via graph filtering [C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3081-3089. |
23 | WEI L, CHEN Z, YIN J, et al. Adaptive graph convolutional subspace clustering [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 6262-6271. |
24 | XIE J, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis [C]// Proceedings of the 33 rd International Conference on Machine Learning.New York: JMLR.org, 2016: 478-487. |
25 | MORADI FARD M, THONET T, GAUSSIER E. Deep k-means: jointly clustering with k-means and learning representations [J]. Pattern Recognition Letters, 2020, 138: 185-192. |
26 | HUANG Q, ZHANG Y, PENG H, et al. Deep subspace clustering to achieve jointly latent feature extraction and discriminative learning [J]. Neurocomputing, 2020, 404: 340-350. |
27 | BAEK S, YOON G, SONG J, et al. Deep self-representative subspace clustering network [J]. Pattern Recognition, 2021, 118: 108041. |
28 | LV J, KANG Z, LU X, et al. Pseudo-supervised deep subspace clustering [J]. IEEE Transactions on Image Processing, 2021, 30: 5252-5263. |
29 | PENG Z, LIU H, JIA Y, et al. Adaptive attribute and structure subspace clustering network [J]. IEEE Transactions on Image Processing, 2022, 31: 3430-3439. |
30 | VIDAL R, FAVARO P. Low rank subspace clustering (LRSC) [J]. Pattern Recognition Letters, 2014, 43: 47-61. |
31 | ABHADIOMHEN S E, WANG Z Y, SHEN X J. Coupled low rank representation and subspace clustering [J]. Applied Intelligence, 2022, 52(1): 530-546. |
32 | XU Y, CHEN S, LI J, et al. Fast subspace clustering by learning projective block diagonal representation [J]. Pattern Recognition, 2023, 135: 109152. |
33 | WANG L, WANG Y, DENG H, et al. Attention reweighted sparse subspace clustering [J]. Pattern Recognition, 2023, 139: 109438. |
34 | DIZAJI K G, HERANDI A, DENG C, et al. Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5747-5756. |
[1] | 张卓, 陈花竹. 基于一致性和多样性的多尺度自表示学习的深度子空间聚类[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 353-359. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||