1 |
徐铭达, 张子柯, 许小可. 基于模体度的社交网络虚假信息传播机制研究[J]. 计算机研究与发展, 2021, 58(7): 1425-1435.
|
|
XU M D, ZHANG Z K, XU X K. Research on spreading mechanism of false information in social networks by motif degree [J]. Journal of Computer Research and Development, 2021, 58(7): 1425-1435.
|
2 |
YANG F, LIU Y, YU X, et al. Automatic detection of rumor on Sina Weibo[C]// Proceedings of the 2012 ACM SIGKDD Workshop on Mining Data Semantics. New York: ACM, 2012: 1-7.
|
3 |
KWON S, CHA M, JUNG K, et al. Prominent features of rumor propagation in online social media[C]// Proceedings of the 2013 IEEE 13th International Conference on Data Mining. Piscataway: IEEE, 2013:1103-1108.
|
4 |
CHEN T, LI X, YIN H, et al. Call attention to rumors: deep attention based recurrent neural networks for early rumor detection[C]// Proceedings of the 22th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Cham: Springer, 2018: 40-52.
|
5 |
KWON S, CHA M, JUNG K. Rumor detection over varying time windows[J]. PLoS ONE, 2017, 12(1): e0168344.
|
6 |
PENG Y, WANG J. Rumor detection based on attention CNN and time series of context information[J]. Future Internet, 2021, 13(11): 267.
|
7 |
HUANG Q, ZHOU C, WU J, et al. Deep structure learning for rumor detection on Twitter[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8.
|
8 |
YUAN C, MA Q, ZHOU W, et al. Jointly embedding the local and global relations of heterogeneous graph for rumor detection[C]//Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 796-805.
|
9 |
V-H NGUYEN, SUGIYAMA K, NAKOV P, et al. FANG: leveraging social context for fake news detection using graph representation[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1165-1174.
|
10 |
周丽华, 王家龙, 王丽珍, 等. 异质信息网络表征学习综述[J]. 计算机学报, 2022, 45(1): 160-189.
|
|
ZHOU L H, WANG J L, WANG L Z, et al. Heterogeneous information network representation learning: a survey [J]. Chinese Journal of Computers, 2022, 45(1): 160-189.
|
11 |
蒋宗礼, 樊珂, 张津丽. 基于生成对抗网络和元路径的异质网络表示学习[J]. 计算机科学, 2022, 49(1): 133-139.
|
|
JIANG Z L, FAN K, ZHANG J L. Generative adversarial network and meta-path based heterogeneous network representation learning [J]. Computer Science, 2022, 49(1): 133-139.
|
12 |
YU F, LIU Q, WU S, et al. A convolutional approach for misinformation identification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2017: 3901-3907.
|
13 |
LOTFI S, MIRZAREZAEE M, HOSSEINZADEH M, et al. Detection of rumor conversations in Twitter using graph convolutional networks[J]. Applied Intelligence, 2021, 51(7): 4774-4787.
|
14 |
DE SILVA N, DOU D. Semantic oppositeness assisted deep contextual modeling for automatic rumor detection in social networks[C]// Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2021: 405-415.
|
15 |
SHU K, ZHOU X, WANG S, et al. The role of user profiles for fake news detection[C]// Proceedings of 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM, 2019: 436-439.
|
16 |
HAMDI T, SLIMI H, BOUNHAS I, et al. A hybrid approach for fake news detection in twitter based on user features and graph embedding [C]// Proceedings of the 16th International Conference of Distributed Computing and Internet Technology. Cham: Springer, 2020: 266-280.
|
17 |
JIANG S, CHEN X, ZHANG L, et al. User-characteristic enhanced model for fake news detection in social media[C]// Proceedings of the 8th CCF International Conference of Natural Language Processing and Chinese Computing. Cham: Springer, 2019: 634-646.
|
18 |
LU Y-J, LI C-T. GCAN: graph-aware co-attention networks for explainable fake news detection on social media[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 505-514.
|
19 |
BAI N, MENG F, RUI X, et al. Rumor detection based on a source-replies conversation tree convolutional neural net[J]. Computing, 2022, 104(5): 1155-1171.
|
20 |
MA J, GAO W, K-F WONG. Detect rumors in microblog posts using propagation structure via kernel learning[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2017: 708-717.
|
21 |
BIAN T, XIAO X, XU T, et al. Rumor detection on social media with bi-directional graph convolutional networks[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 549-556.
|
22 |
HUANG Q, YU J, WU J, et al. Heterogeneous graph attention networks for early detection of rumors on Twitter[C]// Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8.
|
23 |
ZHANG X, ZHANG T, ZHAO W, et al. Dual-attention graph convolutional network[C]// Proceedings of the 5th Asian Conference of Pattern Recognition. Cham: Springer, 2020: 238-251.
|
24 |
MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2016: 3818-3824.
|
25 |
LIU Y, WU Y-F. Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Menlo Park:AAAI, 2018: 354-361.
|
26 |
KHOO L M S, CHIEU H L, QIAN Z, et al. Interpretable rumor detection in microblogs by attending to user interactions[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 8783-8790.
|
27 |
LI J, BAO P, SHEN H, et al. MiSTR: a multiview structural-temporal learning framework for rumor detection[J]. IEEE Transactions on Big Data, 2022, 8(4): 1007-1019.
|