《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (8): 2365-2371.DOI: 10.11772/j.issn.1001-9081.2023081201
收稿日期:2023-09-05
修回日期:2023-11-15
接受日期:2023-11-24
发布日期:2024-08-22
出版日期:2024-08-10
通讯作者:
仇丽青
作者简介:张春雪(1999—),女,山东济宁人,硕士研究生,主要研究方向:社交网络、用户行为预测基金资助:
Chunxue ZHANG, Liqing QIU(
), Cheng’ai SUN, Caixia JING
Received:2023-09-05
Revised:2023-11-15
Accepted:2023-11-24
Online:2024-08-22
Published:2024-08-10
Contact:
Liqing QIU
About author:ZHANG Chunxue, born in 1999, M. S. candidate. Her researchinterests include social network, user behavior prediction.Supported by:摘要:
在线购买预测旨在预测用户的购买行为,为购物网站带来可观的商业价值。针对传统模型学习用户历史行为中隐含的兴趣偏好不准确的问题,提出基于两阶段动态兴趣识别的购买行为预测模型,以预测用户购买商品的概率。首先,模型的第一阶段构建用户-商品的点击频率图,并利用轻量图卷积网络(LightGCN)学习图的上下文特征作为用户的静态兴趣表征;其次,第二阶段采用带有注意力机制的双向门控递归单元(Bi-GRU)探索用户偏好的转化过程;最后,针对潜在的高维特征,建立一个融合动态兴趣和隐含特征的购买预测模型。在2个真实电子商务数据集上的实验结果表明,所提模型与图卷积网络(GCN)模型相比,准确率至少提升0.3个百分点,F1分数至少提升了2.05个百分点。
中图分类号:
张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 计算机应用, 2024, 44(8): 2365-2371.
Chunxue ZHANG, Liqing QIU, Cheng’ai SUN, Caixia JING. Purchase behavior prediction model based on two-stage dynamic interest recognition[J]. Journal of Computer Applications, 2024, 44(8): 2365-2371.
| 符号 | 描述 | 符号 | 描述 |
|---|---|---|---|
| 图,节点,边 | 用户的静态兴趣表示向量 | ||
| 用户 | 动态兴趣向量 | ||
| 用户,商品 | 兴趣的适应性表示向量 | ||
| 边的权重 | 高维隐式特征 | ||
| 交易记录的时间戳 | 用户u购买商品i的概率 |
表1 基本符号
Tab. 1 Basic symbols
| 符号 | 描述 | 符号 | 描述 |
|---|---|---|---|
| 图,节点,边 | 用户的静态兴趣表示向量 | ||
| 用户 | 动态兴趣向量 | ||
| 用户,商品 | 兴趣的适应性表示向量 | ||
| 边的权重 | 高维隐式特征 | ||
| 交易记录的时间戳 | 用户u购买商品i的概率 |
| 属性 | 京东 | 淘宝 |
|---|---|---|
| 用户数 | 49 142 | 6 138 |
| 商品数 | 8 800 | 51 410 |
| 点击记录 | 54 756 | 632 791 |
| 正样本数* | 62 939 | 12 704 |
| 负样本数** | 484 621 | 618 599 |
表2 数据集描述
Tab. 2 Description of datasets
| 属性 | 京东 | 淘宝 |
|---|---|---|
| 用户数 | 49 142 | 6 138 |
| 商品数 | 8 800 | 51 410 |
| 点击记录 | 54 756 | 632 791 |
| 正样本数* | 62 939 | 12 704 |
| 负样本数** | 484 621 | 618 599 |
| 模型 | 所有样本 | 正样本 | ||
|---|---|---|---|---|
| 准确率 | F1分数 | 准确率 | F1分数 | |
| 原始模型 | 93.68 | 82.38 | 61.70 | 68.64 |
| 模型(带Bi-GRU) | 93.91 | 83.73 | 62.00 | 68.77 |
| 模型(带注意力机制) | 93.94 | 84.21 | 62.63 | 70.26 |
| 模型(无权重矩阵) | 94.07 | 84.32 | 63.18 | 72.09 |
| 模型(带有权重矩阵) | 95.06 | 84.69 | 65.95 | 73.27 |
表3 消融实验结果 (%)
Tab. 3 Ablation study results
| 模型 | 所有样本 | 正样本 | ||
|---|---|---|---|---|
| 准确率 | F1分数 | 准确率 | F1分数 | |
| 原始模型 | 93.68 | 82.38 | 61.70 | 68.64 |
| 模型(带Bi-GRU) | 93.91 | 83.73 | 62.00 | 68.77 |
| 模型(带注意力机制) | 93.94 | 84.21 | 62.63 | 70.26 |
| 模型(无权重矩阵) | 94.07 | 84.32 | 63.18 | 72.09 |
| 模型(带有权重矩阵) | 95.06 | 84.69 | 65.95 | 73.27 |
| 模型 | 所有样本 | 正样本 | ||
|---|---|---|---|---|
| 准确率 | F1分数 | 准确率 | F1分数 | |
| LINE-1st | 92.67 | 72.54 | 54.74 | 56.99 |
| LINE-2st | 93.91 | 80.03 | 55.21 | 80.03 |
| GCMC | 93.85 | 80.25 | 56.69 | 80.25 |
| NGCF | 94.52 | 81.33 | 67.67 | 81.33 |
| GCN | 94.76 | 82.64 | 60.29 | 82.64 |
| 本文模型 | 95.06 | 84.69 | 65.95 | 84.69 |
表4 所提模型在京东数据集上的表现 (%)
Tab. 4 Performance of proposed model on JD Dataset
| 模型 | 所有样本 | 正样本 | ||
|---|---|---|---|---|
| 准确率 | F1分数 | 准确率 | F1分数 | |
| LINE-1st | 92.67 | 72.54 | 54.74 | 56.99 |
| LINE-2st | 93.91 | 80.03 | 55.21 | 80.03 |
| GCMC | 93.85 | 80.25 | 56.69 | 80.25 |
| NGCF | 94.52 | 81.33 | 67.67 | 81.33 |
| GCN | 94.76 | 82.64 | 60.29 | 82.64 |
| 本文模型 | 95.06 | 84.69 | 65.95 | 84.69 |
| 模型 | 所有样本 | 正样本 | ||
|---|---|---|---|---|
| 准确率 | F1分数 | 准确率 | F1分数 | |
| LINE-1st | 80.49 | 69.21 | 66.96 | 53.59 |
| LINE-2st | 82.72 | 71.45 | 68.26 | 55.68 |
| GCMC | 83.09 | 73.90 | 69.59 | 58.27 |
| NGCF | 84.27 | 75.67 | 71.50 | 59.12 |
| GCN | 85.03 | 76.08 | 73.76 | 64.15 |
| 本文模型 | 88.47 | 78.32 | 76.69 | 66.03 |
表5 所提模型在淘宝数据集上的表现 (%)
Tab. 5 Performance of the proposed model on Taobao dataset
| 模型 | 所有样本 | 正样本 | ||
|---|---|---|---|---|
| 准确率 | F1分数 | 准确率 | F1分数 | |
| LINE-1st | 80.49 | 69.21 | 66.96 | 53.59 |
| LINE-2st | 82.72 | 71.45 | 68.26 | 55.68 |
| GCMC | 83.09 | 73.90 | 69.59 | 58.27 |
| NGCF | 84.27 | 75.67 | 71.50 | 59.12 |
| GCN | 85.03 | 76.08 | 73.76 | 64.15 |
| 本文模型 | 88.47 | 78.32 | 76.69 | 66.03 |
| 1 | 胡晓丽,张会兵,董俊超,等. 基于CNN-LSTM的用户购买行为预测模型[J]. 计算机应用与软件, 2020, 37(6): 59-64. |
| HU X L, ZHANG H B, DONG J C, et al. Prediction model of user buying behavior based on CNN-LSTM[J]. Computer Applications and Software, 2020, 37(6): 59-64. | |
| 2 | 李美其,齐佳音. 基于购买行为及评论行为的用户购买预测研究 [J]. 北京邮电大学学报(社会科学版), 2016, 18(4):18-25. |
| LI M Q, QI J Y. Customer purchase prediction based on buying behavior and comment behavior[J]. Journal of Beijing University of Posts and Telecommunications (Social Sciences Edition), 2016, 18(4): 18-25. | |
| 3 | 张嵌嵌,何利力. 基于ResNet和DF融合的用户购买预测算法研究[J]. 软件工程与应用, 2022, 11(1): 50-59. |
| ZHANG Q Q, HE L L. Research on user purchase prediction algorithm based on the fusion of ResNet and DF[J]. Software Engineering and Applications, 2022, 11(1): 50-59. | |
| 4 | 贾若雨,曾昂,朱敏,等. 面向在线交易日志的用户购买行为可视化分析[J]. 软件学报, 2017, 28(9): 2450-2467. |
| JIA R Y, ZENG A, ZHU M, et al. Visual analysis of consumer purchasing behavior for online transaction log[J]. Journal of Software, 2017, 28(9): 2450-2467. | |
| 5 | JIA R, LI R, YU M, et al. E-commerce purchase prediction approach by user behavior data[C]// Proceedings of 2017 International Conference on Computer, Information and Telecommunication Systems. Piscataway: IEEE, 2017: 1-5. |
| 6 | JIA R, LI R. Modeling user purchase preference based on implicit feedback[C]// Proceedings of 22nd IEEE International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE, 2018: 832-836. |
| 7 | ZHANG Y, PANG L, SHI L, et al. Large scale purchase prediction with historical user actions on B2C online retail platform[EB/OL]. (2015-03-04) [2023-06-01].. |
| 8 | RESNICK P, IACOVOU N, SUCHAK M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C]// Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. New York: ACM, 1994: 175-186. |
| 9 | 余小高,余小鹏. 基于隐式评分的推荐系统研究[J]. 计算机应用, 2009, 29(6): 1585-1589. |
| YU X G, YU X P. Research on recommendation system based on implicit rating[J]. Journal of Computer Applications, 2009, 29(6): 1585-1589. | |
| 10 | LIU X, LI J. Using support vector machine for online purchase predication[C]// Proceedings 2016 International Conference on Logistics, Informatics and Service Sciences. Piscataway: IEEE, 2016:1-6. |
| 11 | PARK C, KIM D, YANG M C, et al. Click-aware purchase prediction with push at the top[J]. Information Sciences, 2020, 521: 350-364. |
| 12 | ZHAO Y, YAO L, ZHANG Y. Purchase prediction using Tmall-specific features[J]. Concurrency and Computation: Practice and Experience, 2016, 28(14): 3879-3894. |
| 13 | 李振亮,李波. 基于矩阵分解的卷积神经网络改进方法[J]. 计算机应用, 2023, 43(3): 685-691. |
| LI Z L, LI B. Improved method of convolution neural network based on matrix decomposition[J]. Journal of Computer Applications, 2023, 43(3): 685-691. | |
| 14 | 张继杰,杨艳,刘勇. 利用初始残差和解耦操作的自适应深层图卷积[J]. 计算机应用, 2022, 42(1):9-15. |
| ZHANG J J, YANG Y, LIU Y. Adaptive deep graph convolution using initial residual and decoupling operations[J]. Journal of Computer Applications, 2022, 42(1): 9-15. | |
| 15 | NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2014-2023. |
| 16 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2023-06-01].. |
| 17 | WU L, SUN P, HONG R, et al. SocialGCN: an efficient graph convolutional network based model for social recommendation[EB/OL]. (2019-07-11) [2023-06-01].. |
| 18 | VAN DEN BERG R, KIPFT N, WELLING F. Graph convolutional matrix completion[EB/OL]. (2017-10-25) [2023-06-01].. |
| 19 | WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. |
| 20 | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
| 21 | LERCHE L, JANNACH D, LUDEWIG, M. On the value of reminders within e-commerce recommendations[C]// Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization. New York: ACM, 2016: 27-35. |
| 22 | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. (2016-05-19) [2023-06-01].. |
| 23 | SONG K, YAO T, LING Q, et al. Boosting image sentiment analysis with visual attention[J]. Neurocomputing, 2018, 312: 218-228. |
| 24 | YAN X, HU S, MAO Y, et al. Deep multi-view learning methods: a review[J]. Neurocomputing, 2021, 448: 106-129. |
| 25 | ZHANG H, YAN J, ZHANG Y. CTR prediction models considering the dynamics of user interest[J]. IEEE Access, 2020, 8: 72847-72858. |
| 26 | MA R, HU X, ZHANG Q, et. al . Hot topic-aware retweet prediction with masked self-attentive model[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 525-534. |
| 27 | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009: 452-461. |
| 28 | SHEN M, TANG C S, WU D, et al. JD.com: transaction-level data for the 2020 MSOM data driven research challenge[J]. Manufacturing and Service Operations Management, 2020, 26(1):2-10. |
| 29 | TANG J, QU M, WANG M, et al. LINE: large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. |
| [1] | 仇丽青, 苏小盼. 个性化多层兴趣提取点击率预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3411-3418. |
| [2] | 张琪, 纪淑娟, 傅强, 张纯金. 基于带权评论图的水军群组检测及特征分析[J]. 计算机应用, 2019, 39(6): 1595-1600. |
| [3] | 刘大福, 苏旸, 谢洪安, 杨凯. 电子商务中客户评价策略选择的演化博弈分析[J]. 计算机应用, 2016, 36(12): 3269-3273. |
| [4] | 周详, 李少波, 杨观赐. 服装类商品属性实体识别[J]. 计算机应用, 2015, 35(7): 1945-1949. |
| [5] | 蔡志文, 林建宗. 面向社会化电子商务的信任感知协同过滤推荐方法[J]. 计算机应用, 2015, 35(1): 167-171. |
| [6] | 刘彬 张仁津. 从评价网络提升信任启动的准确度[J]. 计算机应用, 2014, 34(8): 2442-2446. |
| [7] | 李萍 朱建波 周立新 廖彬. 基于快速构建模板的购物信息抽取方法[J]. 计算机应用, 2014, 34(3): 733-737. |
| [8] | 冯勇 李军平 徐红艳 党晓婉. 基于社会网络分析的协同推荐方法改进[J]. 计算机应用, 2013, 33(03): 841-844. |
| [9] | 柳欣 雷文庆. 无随机预言的完全匿名多服务订购系统[J]. 计算机应用, 2013, 33(02): 417-429. |
| [10] | 卢志刚 张晓旭. 基于云重心Shapley值法的电子商务声誉联盟利益分配策略[J]. 计算机应用, 2012, 32(10): 2931-2934. |
| [11] | 刘嘉 惠成峰 都兴中 陈振宇. 基于SaaS模式的电子商务推荐平台[J]. 计算机应用, 2012, 32(09): 2679-2682. |
| [12] | 刘彬 张仁津. 选择在线交易服务者的多情境信任和声誉评估系统[J]. 计算机应用, 2012, 32(08): 2350-2359. |
| [13] | 徐翔斌 王佳强 涂欢 穆明. 基于改进RFM模型的电子商务客户细分[J]. 计算机应用, 2012, 32(05): 1439-1442. |
| [14] | 刘超凡 张永良 肖刚. 基于滚动指纹数字签名的电子商务安全认证[J]. 计算机应用, 2012, 32(02): 475-479. |
| [15] | 杨阳 向阳 熊磊. 基于矩阵分解与用户近邻模型的协同过滤推荐算法[J]. 计算机应用, 2012, 32(02): 395-398. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||