1 |
田鹏新,司冠南,安兆亮,等.基于数据驱动的云边智能协同综述[J].计算机应用,2023,43(10):3162-3169.
|
2 |
张军,汪泉,陈习文,等.“互联网+”远程校准方法建模与网络仿真[J].计算机应用,2019,39(S2):189-193.
|
3 |
方立德,徐潇潇,马鑫月,等. 计量仪器的远程量值传递与溯源技术探讨[J].中国测试,2021,47(3):1-8, 35.
|
4 |
宋妍,高坚,孙坚,等.网络化温度校准系统的研究与实现[J].仪表技术与传感器, 2011(9):92-94, 101.
|
5 |
ESPINA P I. Tele-metrology: remote flow meter calibration[J]. Flow Control Magazine, 1999, 5(1): 16-21.
|
6 |
OLDHAM N, PARKER M. Internet-based test service for multifunction calibrators[C]// Proceedings of the 1999 IEEE Instrumentation and Measurement Technology Conference. Piscataway: IEEE, 1999: 1485-1487.
|
7 |
KOBATA T, KOJIMA M, KAJIKAWA H. Development of remote calibration system for pressure standard[J]. Measurement, 2012, 45(10): 2482-2485.
|
8 |
曾令儒,刘民,王立琼.远程计量校准技术[J].电子测量与仪器学报,2005,19(6):6-11,16.
|
9 |
郭景涛,金志刚. 基于互联网的通用远程校准平台[J]. 仪器仪表学报, 2011, 32(4):932-940.
|
10 |
WANG Q, LI H, WANG H, et al. A remote calibration device using edge intelligence[J]. Sensors, 2022, 22(1): No.322.
|
11 |
JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2015: 2017-2025.
|
12 |
陈猛,姚媛媛. 工业大数据时代高速无线通信技术研究综述[J]. 小型微型计算机系统, 2020, 41(8):1696-1701.
|
13 |
金承信,白静. 一种互联网远程校准压力设备的方法[C]// 中国空气动力学会测控技术专委会第六届四次学术交流会论文集. [出版地不详]:中国空气动力学会,2013:384-388.
|
14 |
WEBSTER E, CLARKE D, MASON R, et al. In situ temperature calibration for critical applications near ambient[J]. Measurement Science and Technology, 2020, 31(4): No.044006.
|
15 |
ELLIOTT C J, GREENEN A D, TUCKER D, et al. A slimline integrated self-validating thermocouple: initial results[J]. International Journal of Thermophysics, 2017, 38: No.141.
|
16 |
EDLER F, HAUPT S, MOKDAD S A, et al. Investigation of self-validating thermocouples with integrated fixed-point units[J]. International Journal of Metrology and Quality Engineering, 2015, 6(1): No.103.
|
17 |
TUCKER D, ANDREU A, ELLIOTT C J, et al. Integrated self-validating thermocouples with a reference temperature up to 1329 °C[J]. Measurement Science and Technology, 2018, 29(10): No.105002.
|
18 |
International Electrotechnical Commission. Communication networks and systems in substations Part 9-1: Specific Communication Service Mapping ( ) — sampled values over unidirectional multidrop point to point link: IEC 61850-9-1[S]. Geneva: IEC, 2003-05-01.
|
19 |
International Electrotechnical Commission. Communication networks and systems for power utility automation — Part 9-2: Specific Communication Service Mapping ( ) — sampled values over ISO/IEC 8802-3: IEC 61850-9-2[S]. Geneva: IEC, 2003-05-01.
|
20 |
International Users Group UCA. Implementation guideline for digital interface to instrument transformers using IEC 61850-9-2[EB/OL]. [2023-11-01]. .
|
21 |
肖勇,江波,赵伟,等.基于IEC 61850标准的数字电能表检定技术研究进展[J].电测与仪表,2014,51(1):1-6.
|
22 |
谢宏伟,王化民,张玉峰,等.基于IEC 61850的电能计量装置远程校验[J].水电能源科学,2017,35(8):190-194.
|
23 |
中华人民共和国国家发展和改革委员会. 变电站通信网络和系统 第7-4部分: 变电站和馈线设备基本通信结构 兼容逻辑节点类和数据类: [S].北京:中国电力出版社, 2006.
|
24 |
于春平,白静芬,周建波,等.基于IEC61850的数字化电能计量二次设备远程校验技术[J].电测与仪表,2019,56(4):135-141.
|
25 |
XIA W, QIN X, LU W, et al. Remote calibration of digital input electricity meters[C]// Proceedings of the IEEE 5th International Conference on Electronics Technology. Piscataway: IEEE, 2022: 128-132.
|
26 |
ZHOU H, ZHOU W. A time and frequency measurement technique based on length vernier[C]// Proceedings of the 2006 IEEE International Frequency Control Symposium and Exposition. Piscataway: IEEE, 2006: 267-272.
|
27 |
KALISZ J. Review of methods for time interval measurements with picosecond resolution[J]. Metrologia, 2004, 41(1): 17-32.
|
28 |
王莉萍.基于GNSS共视法的时间频率远程校准方法研究[D].上海:上海交通大学, 2017:54-54.
|
29 |
ZHU J, HUANG K, GAO Y, et al. Simplification techniques for common-view time transfer system based on the EURO-160 GPS receiver[C]// Proceedings of the 4th International Conference on Intelligent Computation Technology and Automation — Volume 2. Piscataway: IEEE, 2011: 695-698.
|
30 |
EXERTIER P, SAMAIN E, COURDE C, et al. Sub-ns time transfer consistency: a direct comparison between GPS CV and T2L2[J]. Metrologia, 2016, 53(6): 1395-1401.
|
31 |
SHIN M Y, CHO D J, PARK S H, et al. A GPS common-view time transfer scheme considering the code bias[C]// Proceedings of the 2012 International Technical Meeting of the Institute of Navigation. Manassas, VA: Institute of Navigation, 2012: 509-512.
|
32 |
ZHANG J, GAO J, YU B, et al. Research on remote GPS common-view precise time transfer based on different ionosphere disturbances[J]. Sensors, 2020, 20(8): No.2290.
|
33 |
WEISS M A, ALLAN D W. An NBS calibration procedure for providing time and frequency at a remote site by weighting and smoothing of GPS common view data[J]. IEEE Transactions on Instrumentation and Measurement, 1987, IM-36(2): 572-578.
|
34 |
RILEY W J. Handbook of frequency stability analysis[M]. Gaithersburg, MD: National Institute of Standards and Technology, 2008: 80-84.
|
35 |
LEVINE J. Introduction to time and frequency metrology[J]. Review of Scientific Instruments, 1999, 70(6): 2567-2596.
|
36 |
GAO C, WANG B, ZHU X, et al. The three corner hat measurement of three hydrogen masers in remote locations via fiber based frequency synchronization network[C]// Proceedings of the 2014 European Frequency and Time Forum. Piscataway: IEEE, 2014: 259-261.
|
37 |
LUNA D, PÉREZ D, CIFUENTES A, et al. Three-cornered hat method via GPS common-view comparisons[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(8):2143-2147.
|
38 |
EICHSTÄDT S, KEIDEL A, TESCH J. Metrology for the digital age[J]. Measurement: Sensors, 2021, 18: No.100232.
|
39 |
UCHIDA S. Text localization and recognition in images and video[M]// DOERMANN D, TOMBRE K. Handbook of Document Image Processing and Recognition. London: Springer, 2014: 843-883.
|
40 |
YE Q, DOERMANN D. Text detection and recognition in imagery: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(7): 1480-1500.
|
41 |
ZHU Y, YAO C, BAI X. Scene text detection and recognition: recent advances and future trends[J]. Frontiers of Computer Science, 2016, 10: 19-36.
|
42 |
尚祖月,李国勇.基于LoRa的无线表决系统中的远程更新设计[J].计算机应用,2020,40(S2):102-105.
|
43 |
郑德权,胡佳. 远程监督关系抽取方法综述[J].计算机应用, 2021,41(S1):7-14.
|
44 |
LUO Y, HARRIS P. Uncertainty in data analysis for STRATH testbed[C]// Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 and IoT. Piscataway: IEEE, 2020: 95-100.
|
45 |
DORST T, LUDWIG B, EICHSÄDT S, et al. Metrology for the factory of the future: towards a case study in condition monitoring[C]// Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference. Piscataway: IEEE, 2019: 1-5.
|
46 |
VOß C, EITENEUER B, NIGGEMANN O. Incorporating uncertainty into unsupervised machine learning for cyber-physical systems[C]// Proceedings of the 2020 IEEE Conference on Industrial Cyberphysical Systems. Piscataway: IEEE, 2020: 475-480.
|
47 |
EICHSTÄDT S, LUDWIG B. Metrology for heterogeneous sensor networks and Industry 4.0[J]. Automatisierungstechnik, 2020, 68(6): 459-464.
|
48 |
EICHSTÄDT S. Publishable summary for 17IND12 Met4FoF “metrology for the factory of the future”[EB/OL]. [2023-11-10]..
|