Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((关皓元[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于资源描述框架图切分与顶点选择性的高效子图匹配方法
关皓元, 朱斌, 李冠宇, 蔡永嘉
计算机应用 2019, 39 (
2
): 360-369. DOI:
10.11772/j.issn.1001-9081.2018061262
摘要
(
464
)
PDF
(1749KB)(
393
)
可视化
收藏
在SPARQL查询过程中,含有复杂结构的资源描述框架(RDF)图的查询效率低下。为此,通过分析几种RDF图的基本结构与RDF顶点的选择性,提出RDF三元组模式选择性(RTPS)——一种基于RDF顶点选择性的图结构切分规则,以提高面向RDF图的子图匹配效率。首先,根据谓词结构在数据图与查询图中的通性建立RDF相邻谓词路径(RAPP)索引,将数据图结构转化为传入-传出双向谓词路径结构以确定查询顶点的搜索空间,并加快顶点的过滤;接着,通过整数线性规划(ILP)问题计算建模将复杂RDF查询图结构分解为若干结构简单的查询子图,通过分析RDF顶点在查询图中的相邻子图结构与特征,确立查询顶点的选择性以确定最优切分方式;然后,通过RDF顶点选择性与相邻子图的结构特征来缩小查询顶点的搜索空间范围,并在数据图中找到符合条件的RDF顶点;最后,遍历数据图以找到与查询子图结构相匹配的子图结构,将得到的子图进行连接并将其作为查询结果输出。实验采用控制变量法,比较了RTPS、RDF子图匹配(RSM)、RDF-3X、GraSS与R3F的查询响应时间。实验结果充分表明,与其他4种方法相比,当查询图复杂度高于9时,RTPS的查询响应时间更短,具有更高的查询效率。
参考文献
|
相关文章
|
多维度评价
Select
2.
信任社交网络中基于图熵的个性化推荐算法
蔡永嘉, 李冠宇, 关皓元
计算机应用 2019, 39 (
1
): 176-180. DOI:
10.11772/j.issn.1001-9081.2018061202
摘要
(
382
)
PDF
(861KB)(
339
)
可视化
收藏
随着社交网络的飞速发展引起了人们对推荐系统(RS)的广泛关注。针对社交网络中现有推荐方法仍存在冷启动问题以及未考虑用户所处的社交网络信息的情况,提出了在信任社交网络中基于图熵的个性化推荐算法(PRAGE)。首先,根据用户物品和它们之间的反馈信息建立用户物品图(UIG),同时引入信任机制建立用户信任图(UTG);其次,通过对两个图使用随机游走算法得到用户与物品的初始相似度和基于信任机制的新的用户物品相似度;重复随机游走过程直至相似度稳定到收敛值;然后,使用UIG和UTG的图熵对两组相似度进行加权并最终相应地得出目标用户的最终推荐列表。在真实的数据集Epinions和FilmTrust上的实验结果表明,相比经典的基于随机游走算法,PRAGE的精确率分别提高了34.7%和19.4%,召回率分别提高了28.9%和21.1%,能够有效地缓解推荐的冷启动问题且在精确率和覆盖率指标上均优于对比算法。
参考文献
|
相关文章
|
多维度评价
Select
3.
基于RDF图结构切分的高效子图匹配方法
关皓元, 朱斌, 李冠宇, 赵玲
计算机应用 2018, 38 (
7
): 1898-1904. DOI:
10.11772/j.issn.1001-9081.2017122950
摘要
(
973
)
PDF
(1251KB)(
406
)
可视化
收藏
针对在SPARQL查询处理中,随着查询图结构逐渐复杂而导致基于图的查询效率愈发低下的问题,通过分析几种资源描述框架(RDF)图的基本结构,提出了一种基于查询图结构切分的子图匹配方法——RSM。首先,将查询图切分为若干结构简单的查询子图,并通过相邻谓词结构索引来定义查询图节点的搜索空间;然后,通过相邻子图结构来缩小搜索空间范围,在数据图中根据搜索空间中的搜索范围找到符合的子图结构;最后,将得到的子图进行连接并作为查询结果输出。将RSM与RDF-3X、R3F、GraSS等主流查询方法作比较,对比了各方法在不同数据集上对于复杂程度不同的查询图的查询响应时间。实验结果充分表明,与其他3种方法相比,在处理结构复杂的查询图时,RSM的查询响应时间更短,具有更高的查询效率。
参考文献
|
相关文章
|
多维度评价