Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((张景会[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于弹性网和直方图相交的非负局部稀疏编码
万源, 张景会, 陈治平, 孟晓静
计算机应用 2019, 39 (
3
): 706-711. DOI:
10.11772/j.issn.1001-9081.2018071483
摘要
(
461
)
PDF
(1007KB)(
356
)
可视化
收藏
针对稀疏编码模型在字典基的选择时忽略了群效应,且欧氏距离不能有效度量特征与字典基之间距离的问题,提出基于弹性网和直方图相交的非负局部稀疏编码方法(EH-NLSC)。首先,在优化函数中引入弹性网模型,消除字典基选择数目的限制,能够选择多组相关特征而排除冗余特征,提高了编码的判别性和有效性。然后,在局部性约束中引入直方图相交,重新定义特征与字典基之间的距离,确保相似的特征可以共享其局部的基。最后采用多类线性支持向量机进行分类。在4个公共数据集上的实验结果表明,与局部线性约束的编码算法(LLC)和基于非负弹性网的稀疏编码算法(NENSC)相比,EH-NLSC的分类准确率分别平均提升了10个百分点和9个百分点,充分体现了其在图像表示和分类中的有效性。
参考文献
|
相关文章
|
多维度评价
Select
2.
基于多层非负局部Laplacian稀疏编码的图像分类
万源, 张景会, 吴克风, 孟晓静
计算机应用 2018, 38 (
9
): 2489-2494. DOI:
10.11772/j.issn.1001-9081.2018020501
摘要
(
715
)
PDF
(1164KB)(
572
)
可视化
收藏
针对单层稀疏编码结构对图像特征学习能力的局限性问题,提出了一个基于图像块稀疏表示的深层架构,即多层融合局部性和非负性的Laplacian稀疏编码算法(MLLSC)。对每个图像平均区域划分并进行尺度不变特征变换(SIFT)特征提取,在稀疏编码阶段,在Laplacian稀疏编码的优化函数中添加局部性和非负性,在第一层和第二层分别进行字典学习和稀疏编码,分别得到图像块级、图像级的稀疏表示,为了去除冗余特征,在进行第二层稀疏编码之前进行主成分分析(PCA)降维,最后采用多类线性支持向量机进行分类。在四个标准数据集上进行验证,实验结果表明,MLLSC方法具有高效的特征学习能力,能够捕获图像更深层次的特征信息,相对于单层结构算法准确率提高了3%~13%,相对于多层稀疏编码算法准确率提高了1%~2.3%;并对不同参数进行了对比分析,充分展现了其在图像分类中的有效性。
参考文献
|
相关文章
|
多维度评价