期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 改进的基于深度学习的遥感图像分类算法
王鑫, 李可, 徐明君, 宁晨
计算机应用    2019, 39 (2): 382-387.   DOI: 10.11772/j.issn.1001-9081.2018061324
摘要761)      PDF (1083KB)(632)    收藏
针对传统的基于深度学习的遥感图像分类算法未能有效融合多种深度学习特征,且分类器性能欠佳的问题,提出一种改进的基于深度学习的高分辨率遥感图像分类算法。首先,设计并搭建一个七层卷积神经网络;其次,将高分辨率遥感图像样本输入到该网络中进行网络训练,得到最后两个全连接层输出作为遥感图像两种不同的高层特征;再次,针对该网络第五层池化层输出,采用主成分分析(PCA)进行降维,作为遥感图像的第三种高层特征;然后,将上述三种高层特征通过串联的形式进行融合,得到一种有效的基于深度学习的遥感图像特征;最后,设计了一种基于逻辑回归的遥感图像分类器,可以对遥感图像进行有效分类。与传统基于深度学习的遥感图像分类算法相比,所提算法分类准确率有较高提升。实验结果表明,该算法在分类准确率、误分类率和Kappa系数上表现优异,能实现良好的分类效果。
参考文献 | 相关文章 | 多维度评价