虚拟专题文章

    2023年中国计算机学会人工智能会议(CCFAI 2023)

    默认 最新文章 浏览次数
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 基于条件生成对抗插补网络的双重判别器缺失值插补算法
    粟佳, 于洪
    《计算机应用》唯一官方网站    2024, 44 (5): 1423-1427.   DOI: 10.11772/j.issn.1001-9081.2023050697
    摘要162)   HTML9)    PDF (872KB)(246)    收藏

    应用中的各种因素可能造成数据缺失,影响后续任务的分析。因此,数据集缺失值的插补尤为重要。相比原本没有插补的处理,错误的插补值也会对分析造成更严重的偏差。针对这种情况,提出新的采用双重判别器的基于条件生成对抗插补网络(C-GAIN)的缺失值插补算法DDC-GAIN(Dual Discriminator based on C-GAIN)。该算法通过一个辅助判别器辅助主判别器判断预测值的真假,即根据一个样本的全局信息判断这个样本生成的真假,更注重特征之间的关系,以此估算预测值。在4个数据集上与5种经典插补算法进行对比实验,结果表明:同样条件下,DDC-GAIN算法在样本量较大时的均方根误差(RMSE)最低;在Default credit card数据集上缺失率为15%时,DDC-GAIN算法的RMSE比次优算法C-GAIN降低了28.99%。这说明利用辅助判别器帮助主判别器学习特征之间的关系是有效的。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 基于特征间关系合成少数类样本的过采样算法
    雷明珠, 王浩, 贾蓉, 白琳, 潘晓英
    《计算机应用》唯一官方网站    2024, 44 (5): 1428-1436.   DOI: 10.11772/j.issn.1001-9081.2023050803
    摘要187)   HTML10)    PDF (1836KB)(202)    收藏

    数据不平衡的现象在现实生活中非常普遍。为了提高整体分类精度,分类器有时会以错分少数类为代价。但在现实生活中,对少数类进行错误分类的后果非常严重。考虑到传统重采样算法容易忽略数据的空间分布和少数类样本特征之间的关系,提出一种基于特征关系的采样算法(SABRF)生成新的样本集。SABRF通过帕累托多目标特征选择保留不平衡数据集的关键区分特征,同时通过极端梯度提升(XGBoost)回归模型捕获少数类样本关键特征之间的关系。此外,还提出一个新的样本选择策略衡量新生成样本的质量。使用6个公开的UCI数据集和1个真实的骨科术后血栓数据集进行实验,结果表明,SABRF在受试者工作特征曲线下面积(AUC)、F1分数(F1_score)和几何平均值(G_mean)上均有较好的表现;此外,对使用基于多指标评价的样本选择策略挑选出的新样本进行分类,不平衡数据的分类结果也最好,验证了样本选择策略的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. 基于边缘异常候选集的迭代式主动多元时序异常检测算法
    孟凡, 杨群力, 霍静, 王新宽
    《计算机应用》唯一官方网站    2024, 44 (5): 1458-1463.   DOI: 10.11772/j.issn.1001-9081.2023050726
    摘要196)   HTML11)    PDF (1234KB)(130)    收藏

    无监督多元时间序列(MTS)异常检测方法因标注成本低而广受关注,但传统方法一般基于两个假设:1)服从独立同分布(IID)假设,即假设时序数据样本之间和属性之间不存在依赖关系;2)高净度启动假设,即假设可拥有完全正常态的时序数据集进行训练。以上假设在实际场景中往往难以满足。为此,提出一种基于边缘异常候选集的迭代式主动多元时序异常检测算法(EraseMTS)。首先,利用一种多粒度时序特征学习方法捕捉子序列内和子序列间的依赖关系,并在此基础上对原始多元时间序列进行再表示;其次,提出一种利用边缘异常候选集的选择策略,以子序列异常得分为基础,同时考虑异常程度,选择待人工交互的范围;最后,提出一种迭代式子序列权重更新机制,将异常反馈信息融入无监督异常检测模型的训练过程中,通过迭代方式不断优化初始训练模型性能。在UCR时间序列库中的4个数据集和1个人工合成数据集上对所提算法的检测性能、可扩展性和稳定性进行验证,实验结果表明该算法能够有效且稳定运行。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 融合多尺度和注意力机制的小样本目标检测
    李鸿天, 史鑫昊, 潘卫国, 徐成, 徐冰心, 袁家政
    《计算机应用》唯一官方网站    2024, 44 (5): 1437-1444.   DOI: 10.11772/j.issn.1001-9081.2023050699
    摘要292)   HTML14)    PDF (2781KB)(1231)    收藏

    现有基于微调的二阶段小样本目标检测方法对新类特征不敏感,易将新类别误判成与它相似度高的基类,影响模型的检测性能。针对上述问题,提出一种融合多尺度和注意力机制的小样本目标检测(MA-FSOD)算法。首先在骨干网络使用分组卷积和大卷积核提取更具类别区分性的特征,并加入卷积注意力模块(CBAM)实现特征的自适应增强;再通过改进的金字塔网络实现多尺度的特征融合,使候选框生成网络(RPN)可以准确找到感兴趣区域(RoI),从多个尺度向分类头提供更丰富的高质量正样本;最后在微调阶段采用余弦分类头进行分类,降低类内方差。在PASCAL-VOC 2007/2012数据集上与基于候选框编码对比损失的小样本目标检测(FSCE)算法相比,MA-FSOD算法对新类的AP50提升了5.6个百分点;在更具挑战性的MSCOCO数据集中,与Meta-Faster-RCNN相比,10-shot和30-shot对应的AP则分别提升了0.1个百分点和1.6个百分点。实验结果表明,相较于一些主流的小样本目标检测算法,MA?FSOD算法能更有效地缓解误分类问题,实现更高精度的小样本目标检测。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 基于双阶段搜索的约束进化多任务优化算法
    赵楷文, 王鹏, 童向荣
    《计算机应用》唯一官方网站    2024, 44 (5): 1415-1422.   DOI: 10.11772/j.issn.1001-9081.2023050696
    摘要206)   HTML14)    PDF (1756KB)(345)    收藏

    高效地平衡算法的多样性、收敛性和可行性是求解约束多目标优化问题(CMOP)的关键;然而,复杂约束的出现给该类问题的求解带来了更大的挑战。因此,提出一种基于双阶段搜索的约束进化多任务优化算法(TEMA),通过完成两个协同进化的任务实现多样性、收敛性和可行性之间的平衡。首先,进化过程由探索和利用两个阶段组成,分别致力于加强算法在目标空间的广泛探索能力和高效搜索能力;其次,设计一种动态约束处理策略以平衡种群中可行解的比例,从而增强算法在可行区域的探索能力;再次,提出一种回退搜索策略,利用无约束Pareto前沿所包含的信息指导算法向约束Pareto前沿快速收敛;最后,在两个基准测试集中的23个问题上进行对比实验。实验结果表明,TEMA分别在14个和13个测试问题上取得最优反世代距离(IGD)值和超体积(HV)值,体现出明显优势。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 基于三元中心引导的弱监督视频异常检测
    朱子蒙, 李志新, 郇战, 陈瑛, 梁久祯
    《计算机应用》唯一官方网站    2024, 44 (5): 1452-1457.   DOI: 10.11772/j.issn.1001-9081.2023050748
    摘要247)   HTML11)    PDF (2177KB)(298)    收藏

    针对监控视频异常的复杂多样性和短时持续性,引入弱监督视频异常检测方法,旨在仅使用视频级别的标签进行异常检测,并提出了基于变分自编码器(VAE)与长短期记忆(LSTM)网络的异常回归网络VLARNet作为异常检测框架,以捕获时序数据中的时间依赖关系、去除冗余信息,保留数据的关键信息。该框架将异常检测视为回归问题,为学习检测特征,设计了异常分数回归的三元中心损失(TCLASR),与动态多实例学习损失(DMIL)相结合以进一步提高特征的区分能力。DMIL能够扩大异常实例与正常实例之间的类间距离,但同时也扩大了类内距离,而TCLASR可使来自同类的实例与类中心的距离更接近,与不同类中心的距离更远。对VLARNet在ShanghaiTech与CUHK Avenue数据集上进行了综合实验。实验结果表明,VLARNet能够有效利用视频数据的各种信息,在两个数据集上获得的受试者工作特征曲线下面积(AUC)分别为94.64%和93.00%,明显优于对比算法。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 小样本场景下的元迁移学习睡眠分期模型
    时旺军, 王晶, 宁晓军, 林友芳
    《计算机应用》唯一官方网站    2024, 44 (5): 1445-1451.   DOI: 10.11772/j.issn.1001-9081.2023050747
    摘要286)   HTML11)    PDF (1546KB)(468)    收藏

    睡眠障碍受到越来越多的关注,且自动化睡眠分期的准确性、泛化性受到了越来越多的挑战。然而,公开的睡眠数据十分有限,睡眠分期任务实际上更近似于一种小样本场景;同时由于睡眠特征的个体差异普遍存在,现有的机器学习模型很难保证准确判读未参与训练的新受试者的数据。为了实现对新受试者睡眠数据的精准分期,现有研究通常需要额外采集、标注新受试者的大量数据,并对模型进行个性化微调。基于此,借鉴迁移学习中基于缩放-偏移的权重迁移思想,提出一种元迁移睡眠分期模型MTSL(Meta Transfer Sleep Learner),设计了一种新的元迁移学习框架:训练阶段包括预训练与元迁移训练两步,其中元迁移训练时使用大量的元任务进行训练;而在测试阶段仅使用极少的新受试者数据进行微调,模型就能轻松适应新受试者的特征分布,大幅减少对新受试者进行准确睡眠分期的成本。在两个公开的睡眠数据集上的实验结果表明,MTSL模型在单数据集、跨数据集两种条件下都能取得更高的准确率和F1分数,这表明MTSL更适合小样本场景下的睡眠分期任务。

    图表 | 参考文献 | 相关文章 | 多维度评价
2025年 45卷 4期
刊出日期: 2025-04-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会