-
椭圆曲线中直接计算7P的方法及其应用
- 赖忠喜 张占军 陶东娅
-
2013, 33(07):
1870-1874.
DOI: 10.11772/j.issn.1001-9081.2013.07.1870
-
摘要
(
)
PDF (637KB)
(
)
-
参考文献 |
相关文章 |
计量指标
为了提高椭圆曲线标量乘法的效率,根据将求逆转换为乘法运算的思想,提出了在二进制域F2n上用仿射坐标直接计算7P的两种算法。两种算法分别通过引入公因子和除法多项式来计算7P,其运算量分别为2I+7S+14M和I+6S+20M,比Purohit等提出的算法(PUROHIT G N, RAWAT S A, KUMAR M. Elliptic curve point multiplication using MBNR and Point halving. International Journal of Advanced Networking and Applications, 2012, 3(5): 1329-1337)分别节省了一次和两次求逆运算。同时还给出直接计算7kP的快速算法,该算法比重复计算k次7P更有效。最后结合半点运算和扩展多基表示形式将这些新算法应用到标量乘法中。实验结果表明,在美国国家标准技术研究所(NIST)推荐的椭圆曲线上,当预存储点的个数为2和 5时,新算法比Purohit算法效率提高了30%和37%,比洪银芳等所提的算法(洪银芳,桂丰,丁勇.基于半点和多基表示的标量乘法扩展算法.计算机工程,2011,37(4):163-165)效率提高了9%和13%。新算法以增加少量的预计算存储为代价,能有效降低标量乘法的运算量。