[1] LIAO N, HU Z, MA Y, et al. Review of the short-term load forecasting methods of electric power system [J]. Power System Protection and Control, 2011, 39(1): 147-152. (廖旎焕,胡智宏,马莹莹,等.电力系统短期负荷预测方法综述 [J].电力系统保护与控制,2011,39(1):147-152.) [2] LI Y, CHEN P. A parallel SVR model for short term load forecasting based on Windows Azure platform [C]//Proceedings of the 2012 Asia-Pacific Power and Energy Engineering Conferece. Piscataway: IEEE, 2012: 1-4. [3] LEI S, SUN C, ZHOU Q, et al. Short-term load forecasting method based on RBF neural network and ANFIS system [J]. Proceedings of the CSEE, 2005, 25(22): 81-85. (雷绍兰,孙才新,周湶,等.基于径向基神经网络和自适应神经模糊系统的电力短期负荷预测方法 [J].中国电机工程学报,2005,25(22):81-85.) [4] MOTAMEDI A, ZAREIPOUR H, ROSEHART W D. Electricity price and demand forecasting in smart grids [J]. IEEE Transactions on Smart Grid, 2012, 3(2): 664-674. [5] GUAN C, LUH P B, MICHEL L D, et al. Very short-term load forecasting: wavelet neural networks with data pre-filtering [J]. IEEE Transactions on Power Systems, 2012, 28(1): 30-41. [6] KHOTANZAD, A, ZHOU E, ELRAGAL H. A neuro-fuzzy approach to short-term load forecasting in a price-sensitive environment [J]. IEEE Transactions on Power Systems, 2002, 17(4):1273-1282. [7] ZHANG Y, ZHOU Q SUN C, et al. RBF network and ANFIS-based short-term load forecasting approach in real-time price environment [J]. IEEE Transactions on Power Systems, 2008, 23(3): 853-858. [8] GE S, JIA O, LIU H. A gray neural network model improved by genetic algorithm for short-term load forecasting in price-sensitive environment [J]. Power System Technology, 2012,36(1):224-229.(葛少云,贾鸥莎,刘洪.基于遗传灰色神经网络模型的实时电价条件下短期电力负荷预测 [J]. 电网技术,2012,36(1):224-229.) [9] HE Y, DAI A, LUO T, et al. A two-stage electricity demand forecasting model in the smart grid [J]. Power System Protection and Control,2010,38(21):167-172. (何永秀,戴爱英,罗涛,等.智能电网条件下的两阶段电力需求预测模型研究 [J]. 电力系统保护与控制,2010,38(21):167-172.) [10] YIN S, ZHANG Y, BAI K. A smart power utilization system based on real-time electricity prices [J]. Power System Technology, 2009, 33(19): 81-85. (殷树刚,张宇,拜克明.基于实时电价的智能用电系统 [J].电网技术,2009, 33(19):11-16.) [11] KANG C, ZHOU A, WANG P, et al. Impact analysis of hourly weather factors in short-term load forecasting and its processing strategy [J]. Power System Technology, 2006, 30(7): 5-10. (康重庆,周安石,王鹏,等.短期负荷预测中实时气象因素的影响分析及其处理策略 [J]. 电网技术,2006,30(7):5-10.) [12] DING Q, ZHANG H, ZHANG J. Temperature sensitive method for short term load forecasting during holidays [J]. Automation of Electric Power Systems,2005,29(17):93-97.(丁恰,张辉,张君毅.考虑气象信息的节假日负荷预测 [J]. 电力系统自动化,2005,29(17):93-97.) [13] LUO D, HE H. A shape similarity criterion based curve fitting algorithm and its application in ultra-short-term load forecasting [J]. Power System Technology,2007,31(21):81-84.(罗滇生,何洪英.基于形态相似准则的曲线拟合算法及其在超短期负荷预测中的应用 [J]. 电网技术,2007,31(21):81-84.) [14] LUO D, LI W, HE H. Very short-term load forecasting method based on local shape similarity [J]. Proceedings of the CSU-EPSA,2008,20(1):75-79.(罗滇生,李伟伟,何洪英.基于局部形相似的超短期负荷预测方法 [J]. 电力系统及其自动化学报,2008,20(1):75-79.) [15] SUYKENS J, VANDEWALLE J. Multiclass least squares support vector machines [C]//Proceedings of the 1999 International Joint Conference on neural networks. Piscataway: IEEE, 1999: 900-903. [16] SUYKENS J, VANDEWALLE J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300. [17] ZHOU D, LAI F, LIU Y, et al. Electric power system load forecast and electricity price forecast [J]. Power System Protection and Control, 2000, 28(10): 31-33. (周佃民,赖菲,刘亚安,等.电力系统负荷预测与电价预测 [J]. 电力系统保护与控制,2000,28(10):31-33.) [18] BAI Y, MENG X, HAN X. Mining fuzzy association rules in quantitative databases [J]. Applied Mechanics and Materials, 2012, 182/183: 2003-2007. [19] WANG Y, WANG D, CHAI T. Extraction of fuzzy rules with completeness and robustness [J]. Acta Automoatica Sinica,2010,36(9):1337-1342.(王永富,王殿辉,柴天佑. 一个具有完备性和鲁棒性的模糊规则提取算法 [J]. 自动化学报,2010,36(9):1337-1342.) [20] MA W, BAI X, MU L. Short term load forecasting using artificial neuton network and fuzzy inference [J]. Power System Technology,2003,27(5):29-32. (马文晓,白晓民,沐连顺. 基于人工神经网络和模糊推理的短期负荷预测方法 [J]. 电网技术,2003,27(5):29-32.) [21] Australian Energy Market Operator. AEMO's first national gas forecasting report [R/OL]. [2014-11-17]. http://www.aemo.com.au. |