Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (1): 311-317.DOI: 10.11772/j.issn.1001-9081.2023010078
• Frontier and comprehensive applications • Previous Articles
Received:
2023-01-31
Revised:
2023-03-31
Accepted:
2023-04-03
Online:
2023-06-06
Published:
2024-01-10
Contact:
Leichun WANG
About author:
SHI Hanxiao, born in 1998, M. S. candidate. His research interests include power load forecasting, deep learning.
Supported by:
通讯作者:
王雷春
作者简介:
史含笑(1998—),男,河南商丘人,硕士研究生,主要研究方向:电力负荷预测、深度学习;基金资助:
CLC Number:
Hanxiao SHI, Leichun WANG. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism[J]. Journal of Computer Applications, 2024, 44(1): 311-317.
史含笑, 王雷春. 结合LSTM和自注意力机制的图卷积网络短期电力负荷预测[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 311-317.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023010078
分类 | 范围 |
---|---|
训练集 | 2017年1月1日—2017年9月30日 |
验证集 | 2017年10月1日—2017年11月30日 |
测试集 | 2017年12月1日—2017年12月31日 |
Tab. 1 Division of Morocco dataset
分类 | 范围 |
---|---|
训练集 | 2017年1月1日—2017年9月30日 |
验证集 | 2017年10月1日—2017年11月30日 |
测试集 | 2017年12月1日—2017年12月31日 |
分类 | 范围 |
---|---|
训练集 | 2016年1月1日—2019年12月31日 |
验证集 | 2020年1月1日—2020年2月29日 |
测试集 | 2020年3月1日—2020年6月26日 |
Tab. 2 Division of Panama dataset
分类 | 范围 |
---|---|
训练集 | 2016年1月1日—2019年12月31日 |
验证集 | 2020年1月1日—2020年2月29日 |
测试集 | 2020年3月1日—2020年6月26日 |
LSTM层数 | GCN层数 | 训练轮数 | MAPE/% |
---|---|---|---|
1 | 1 | 100 | 1.86 |
2 | 1 | 100 | 1.67 |
3 | 1 | 100 | 1.79 |
4 | 1 | 100 | 1.90 |
Tab. 3 Forecasting results with different LSTM layers on Morocco dataset
LSTM层数 | GCN层数 | 训练轮数 | MAPE/% |
---|---|---|---|
1 | 1 | 100 | 1.86 |
2 | 1 | 100 | 1.67 |
3 | 1 | 100 | 1.79 |
4 | 1 | 100 | 1.90 |
LSTM层数 | GCN层数 | 训练轮数 | MAPE/% |
---|---|---|---|
2 | 1 | 100 | 1.67 |
2 | 2 | 100 | 1.60 |
2 | 3 | 100 | 1.54 |
2 | 4 | 100 | 1.62 |
Tab. 4 Forecasting results with different GCN layers on Morocco dataset
LSTM层数 | GCN层数 | 训练轮数 | MAPE/% |
---|---|---|---|
2 | 1 | 100 | 1.67 |
2 | 2 | 100 | 1.60 |
2 | 3 | 100 | 1.54 |
2 | 4 | 100 | 1.62 |
残差次数 | 训练轮数 | MAPE/% |
---|---|---|
0 | 100 | 1.54 |
1 | 100 | 1.40 |
2 | 100 | 1.67 |
3 | 100 | 1.79 |
Tab. 5 Forecasting results with different residual times on Morocco dataset
残差次数 | 训练轮数 | MAPE/% |
---|---|---|
0 | 100 | 1.54 |
1 | 100 | 1.40 |
2 | 100 | 1.67 |
3 | 100 | 1.79 |
模型 | 工作日 | 休息日 | 全部测试集 | ||||||
---|---|---|---|---|---|---|---|---|---|
MAPE/% | MAE/kW | RMSE/kW | MAPE/% | MAE/kW | RMSE/kW | MAPE/% | MAE/kW | RMSE/kW | |
SVM | 3.36 | 961.10 | 1 074.51 | 3.24 | 870.83 | 1 038.03 | 3.34 | 948.20 | 1 069.30 |
LSTM | 2.34 | 678.47 | 790.26 | 2.03 | 563.89 | 656.80 | 2.30 | 662.10 | 771.19 |
CNN-LSTM | 1.88 | 561.80 | 687.33 | 1.94 | 523.61 | 650.85 | 1.89 | 556.34 | 682.11 |
CNN-LSTM-attention | 1.76 | 524.31 | 658.97 | 1.81 | 500.69 | 604.09 | 1.77 | 520.94 | 651.13 |
GCNLS-STLF | 1.36 | 402.08 | 510.79 | 1.62 | 412.50 | 530.20 | 1.40 | 403.57 | 513.56 |
Tab. 6 Forecasting results of different models on Morocco dataset
模型 | 工作日 | 休息日 | 全部测试集 | ||||||
---|---|---|---|---|---|---|---|---|---|
MAPE/% | MAE/kW | RMSE/kW | MAPE/% | MAE/kW | RMSE/kW | MAPE/% | MAE/kW | RMSE/kW | |
SVM | 3.36 | 961.10 | 1 074.51 | 3.24 | 870.83 | 1 038.03 | 3.34 | 948.20 | 1 069.30 |
LSTM | 2.34 | 678.47 | 790.26 | 2.03 | 563.89 | 656.80 | 2.30 | 662.10 | 771.19 |
CNN-LSTM | 1.88 | 561.80 | 687.33 | 1.94 | 523.61 | 650.85 | 1.89 | 556.34 | 682.11 |
CNN-LSTM-attention | 1.76 | 524.31 | 658.97 | 1.81 | 500.69 | 604.09 | 1.77 | 520.94 | 651.13 |
GCNLS-STLF | 1.36 | 402.08 | 510.79 | 1.62 | 412.50 | 530.20 | 1.40 | 403.57 | 513.56 |
模型 | MAPE/% | MAE/MW | RMSE/MW |
---|---|---|---|
SVM | 2.74 | 34.21 | 42.76 |
LSTM | 2.29 | 29.17 | 34.19 |
CNN-LSTM | 1.73 | 22.17 | 29.22 |
CNN-LSTM-attention | 1.64 | 20.79 | 26.98 |
GCNLS-STLF | 1.35 | 17.14 | 22.71 |
Tab. 7 Forecasting results of different models in March on Panama dataset
模型 | MAPE/% | MAE/MW | RMSE/MW |
---|---|---|---|
SVM | 2.74 | 34.21 | 42.76 |
LSTM | 2.29 | 29.17 | 34.19 |
CNN-LSTM | 1.73 | 22.17 | 29.22 |
CNN-LSTM-attention | 1.64 | 20.79 | 26.98 |
GCNLS-STLF | 1.35 | 17.14 | 22.71 |
模型 | MAPE/% | MAE/MW | RMSE/MW |
---|---|---|---|
SVM | 2.81 | 31.04 | 42.11 |
LSTM | 2.40 | 26.23 | 35.04 |
CNN-LSTM | 1.76 | 19.08 | 24.97 |
CNN-LSTM-attention | 1.69 | 18.45 | 24.84 |
GCNLS-STLF | 1.41 | 16.37 | 22.22 |
Tab. 8 Forecasting results of different models in June on Panama dataset
模型 | MAPE/% | MAE/MW | RMSE/MW |
---|---|---|---|
SVM | 2.81 | 31.04 | 42.11 |
LSTM | 2.40 | 26.23 | 35.04 |
CNN-LSTM | 1.76 | 19.08 | 24.97 |
CNN-LSTM-attention | 1.69 | 18.45 | 24.84 |
GCNLS-STLF | 1.41 | 16.37 | 22.22 |
1 | AHMAD N, GHADI Y, ADNAN M, et al. Load forecasting techniques for power system: Research challenges and survey [J]. IEEE Access, 2022, 10: 71054-71090. 10.1109/access.2022.3187839 |
2 | SABER A Y, ALAM A K M R. Short term load forecasting using multiple linear regression for big data [C]// Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2017: 1-6. 10.1109/ssci.2017.8285261 |
3 | SHARMA S, MAJUMDAR A, ELVIRA V, et al. Blind Kalman filtering for short-term load forecasting [J]. IEEE Transactions on Power Systems, 2020, 35(6): 4916-4919. 10.1109/tpwrs.2020.3018623 |
4 | 安颖坤,朱永丹.基于线性回归法和指数平滑法对电力负荷的预测[J].电力设备管理, 2021(5): 177-179. |
AN Y K, ZHU Y D. Power load prediction based on linear regression method and exponential smoothing method [J]. Electric Power Equipment Management, 2021(5): 177-179. | |
5 | SINGH U, VADHERA S. Random forest and Xgboost technique for short-term load forecasting [C]// Proceedings of the 2022 1st International Conference on Sustainable Technology for Power and Energy Systems. Piscataway: IEEE, 2022: 1-6. 10.1109/stpes54845.2022.10006635 |
6 | ZHANG J, ZHANG Q, LI G, et al. Application of HIMVO-SVM in short-term load forecasting [C]// Proceedings of the 2020 Chinese Control and Decision Conference. Piscataway: IEEE, 2020: 768-772. 10.1109/ccdc49329.2020.9164644 |
7 | EMHAMED A A, SHRIVASTAVA J. Electrical load distribution forecasting utilizing Support Vector Model (SVM) [J]. Materials Today: Proceedings, 2021, 47: 41-46. 10.1016/j.matpr.2021.03.516 |
8 | NASSIF A B, SOUDAN B, AZZEH M, et al. Artificial intelligence and statistical techniques in short-term load forecasting: A review [EB/OL]. (2021-12-29) [2023-03-10]. . 10.15866/iremos.v14i6.21328 |
9 | JANKOVIĆ Z, SELAKOV A, BEKUT D, et al. Day similarity metric model for short-term load forecasting supported by PSO and artificial neural network [J]. Electrical Engineering, 2021, 103: 2973-2988. 10.1007/s00202-021-01286-6 |
10 | CHI D W. Research on electricity consumption forecasting model based on wavelet transform and multi-layer LSTM model [J]. Energy Reports, 2022, 8: 220-228. 10.1016/j.egyr.2022.01.169 |
11 | BIANCHI F M, MAIORINO E, KAMPFFMEYER M C, et al. An overview and comparative analysis of recurrent neural networks for short term load forecasting [EB/OL]. (2018-07-20) [2023-03-09]. . 10.1007/978-3-319-70338-1_4 |
12 | 肖勇,郑楷洪,郑镇境,等.基于多尺度跳跃深度长短期记忆网络的短期多变量负荷预测[J].计算机应用, 2021, 41(1): 231-236. |
XIAO Y, ZHENG K H, ZHENG Z J, et al. Multi-scale skip deep long short-term memory network for short-term multivariate load forecasting [J]. Journal of Computer Applications, 2021, 41(1): 231-236. | |
13 | RAFI S H, NAHID-AL-MASOOD, DEEBA S R, et al. A short-term load forecasting method using integrated CNN and LSTM network [J]. IEEE Access, 2021, 9: 32436-32448. 10.1109/access.2021.3060654 |
14 | XU F, WENG G, YE Q, et al. Research on load forecasting based on CNN-LSTM hybrid deep learning model [C]// Proceedings of the 2022 IEEE 5th International Conference on Electronics Technology. Piscataway: IEEE, 2022: 1332-1336. 10.1109/icet55676.2022.9824615 |
15 | AGGA A, ABBOU A, LABBADI M, et al. Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models [J]. Renewable Energy, 2021, 177: 101-112. 10.1016/j.renene.2021.05.095 |
16 | 魏健,赵红涛,刘敦楠,等.基于注意力机制的CNN-LSTM短期电力负荷预测方法[J].华北电力大学学报(自然科学版), 2021, 48(1): 42-47. 10.3969/j.ISSN.1007-2691.2021.01.05 |
WEI J, ZHAO H T, LIU D N, et al. Short-term power load forecasting method by attention-based CNN-LSTM [J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(1): 42-47. 10.3969/j.ISSN.1007-2691.2021.01.05 | |
17 | LIU J, GAO H, YAN Q, et al. Short-term load forecasting method based on LSTM-attention mechanism [C]// Proceedings of the 2021 IEEE Sustainable Power and Energy Conference. Piscataway: IEEE, 2021: 3837-3842. 10.1109/ispec53008.2021.9735593 |
18 | WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. 10.1109/tnnls.2020.2978386 |
19 | XIONG J, HONG H, XU C, et al. Graph convolutional network based electricity demand forecasting in power distribution networks [C]// Proceedings of the 2022 International Conference on Artificial Intelligence and Autonomous Robot Systems. Piscataway: IEEE, 2022: 104-109. 10.1109/aiars57204.2022.00031 |
20 | JIANG R, WANG S, ZHANG Y. A dynamic temporal self-attention graph convolutional network for traffic prediction [EB/OL]. (2023-02-21) [2023-03-08]. . |
21 | CAO D, WANG Y, DUAN J, et al. Spectral temporal graph neural network for multivariate time-series forecasting [EB/OL]. (2021-03-13) [2023-03-13]. . 10.48550/arXiv.2103.07719 |
22 | YIN X, YAN D, ALMUDAIFER A, et al. Forecasting stock prices using stock correlation graph: A graph convolutional network approach [C]// Proceedings of the 2021 International Joint Conference on Neural Networks. Piscataway: IEEE, 2021: 1-8. 10.1109/ijcnn52387.2021.9533510 |
23 | AZAM M F, YOUNIS M S. Multi-horizon electricity load and price forecasting using an interpretable multi-head self-attention and EEMD-based framework [J]. IEEE Access, 2021, 9: 85918-85932. 10.1109/access.2021.3086039 |
[1] | Jia CHEN, Hong ZHANG. Image text retrieval method based on feature enhancement and semantic correlation matching [J]. Journal of Computer Applications, 2024, 44(1): 16-23. |
[2] | Li’an CHEN, Yi GUO. Text sentiment analysis model based on individual bias information [J]. Journal of Computer Applications, 2024, 44(1): 145-151. |
[3] | Guolong YUAN, Yujin ZHANG, Yang LIU. Image tampering forensics network based on residual feedback and self-attention [J]. Journal of Computer Applications, 2023, 43(9): 2925-2931. |
[4] | Yi ZHANG, Gangsheng CAI, Zhenmei WANG. Long non-coding RNA-disease association prediction model based on semantic and global dual attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2125-2132. |
[5] | Yuan WEI, Yan LIN, Shengnan GUO, Youfang LIN, Huaiyu WAN. Prediction of taxi demands between urban regions by fusing origin-destination spatial-temporal correlation [J]. Journal of Computer Applications, 2023, 43(7): 2100-2106. |
[6] | Yi ZHANG, Zhenmei WANG. circRNA-disease association prediction by two-stage fusion on graph auto-encoder [J]. Journal of Computer Applications, 2023, 43(6): 1979-1986. |
[7] | Kejun JIN, Hongtao YU, Yiteng WU, Shaomei LI, Jianpeng ZHANG, Honghao ZHENG. Improved defense method for graph convolutional network based on singular value decomposition [J]. Journal of Computer Applications, 2023, 43(5): 1511-1517. |
[8] | Jiagao WU, Shiwen ZHANG, Yudong JIANG, Linfeng LIU. Social-interaction GAN for pedestrian trajectory prediction based on state-refinement long short-term memory and attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1565-1570. |
[9] | Cheng FANG, Bei LI, Ping HAN, Qiong WU. Fine-grained emotion classification of Chinese microblog based on syntactic dependency graph [J]. Journal of Computer Applications, 2023, 43(4): 1056-1061. |
[10] | Haiyu YANG, Wenpu GUO, Kai KANG. Signal modulation recognition method based on convolutional long short-term deep neural network [J]. Journal of Computer Applications, 2023, 43(4): 1318-1322. |
[11] | Hao SUN, Jian CAO, Haisheng LI, Dianhui MAO. Session-based recommendation model based on enhanced capsule network [J]. Journal of Computer Applications, 2023, 43(4): 1043-1049. |
[12] | Chunyong YIN, Liwen ZHOU. Unsupervised time series anomaly detection model based on re-encoding [J]. Journal of Computer Applications, 2023, 43(3): 804-811. |
[13] | Yingmao YAO, Xiaoyan JIANG. Video-based person re-identification method based on graph convolution network and self-attention graph pooling [J]. Journal of Computer Applications, 2023, 43(3): 728-735. |
[14] | Tao PENG, Yalong KANG, Feng YU, Zili ZHANG, Junping LIU, Xinrong HU, Ruhan HE, Li LI. Pedestrian trajectory prediction based on multi-head soft attention graph convolutional network [J]. Journal of Computer Applications, 2023, 43(3): 736-743. |
[15] | Ruoying WANG, Fan LYU, Liuqing ZHAO, Fuyuan HU. Floorplan generation algorithm integrating user requirements and boundary constraints [J]. Journal of Computer Applications, 2023, 43(2): 575-582. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||