Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (3): 904-910.DOI: 10.11772/j.issn.1001-9081.2021030447
• Data science and technology • Previous Articles Next Articles
An YANG1, Qun JIANG2, Gang SUN2, Jie YIN3, Ying LIU1()
Received:
2021-03-23
Revised:
2021-07-06
Accepted:
2021-07-07
Online:
2022-04-09
Published:
2022-03-10
Contact:
Ying LIU
About author:
YANG An, born in 1998, Ph. D. candidate. His research interests include data mining, transfer learning.通讯作者:
刘英
作者简介:
杨安(1998—),男,山东聊城人,博士研究生,主要研究方向:数据挖掘、迁移学习CLC Number:
An YANG, Qun JIANG, Gang SUN, Jie YIN, Ying LIU. Power data analysis based on financial technical indicators[J]. Journal of Computer Applications, 2022, 42(3): 904-910.
杨安, 蒋群, 孙钢, 殷杰, 刘英. 基于金融技术指标的用电数据分析[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 904-910.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021030447
指标类型 | 特征参数 | 含义 |
---|---|---|
K线核心参数 | 日最大负荷 | |
日最小负荷 | ||
日尖峰平均负荷 | ||
日平谷平均负荷 | ||
均线 | LSMA(14) | 最小二乘移动平均值 |
VHF指标 | VHF(28) | 十字过滤线指标值 |
ZLMACD 指标 | ZLMA(12) | 零滞后快速移动平均值 |
ZLMA(26) | 零滞后慢速移动平均值 | |
ZLDIF | 零滞后差离值 | |
ZLMACD | 零滞后异同移动平均值 | |
布林线指标 | BOLLUP | 布林线上轨线 |
BOLLDN | 布林线下轨线 | |
社会因素 | Day | 周期参数,指示周一到周日 |
Holiday | 节假日参数,是否节假日 |
Tab. 1 14-dimensional daily load feature vector
指标类型 | 特征参数 | 含义 |
---|---|---|
K线核心参数 | 日最大负荷 | |
日最小负荷 | ||
日尖峰平均负荷 | ||
日平谷平均负荷 | ||
均线 | LSMA(14) | 最小二乘移动平均值 |
VHF指标 | VHF(28) | 十字过滤线指标值 |
ZLMACD 指标 | ZLMA(12) | 零滞后快速移动平均值 |
ZLMA(26) | 零滞后慢速移动平均值 | |
ZLDIF | 零滞后差离值 | |
ZLMACD | 零滞后异同移动平均值 | |
布林线指标 | BOLLUP | 布林线上轨线 |
BOLLDN | 布林线下轨线 | |
社会因素 | Day | 周期参数,指示周一到周日 |
Holiday | 节假日参数,是否节假日 |
MAPE/% | |||||
---|---|---|---|---|---|
LSTM-FI | 8.450 | 7.394 | 9.071 | 7.194 | 14.253 |
LSTM-noFI | 12.018 | 11.416 | 14.326 | 12.288 | 23.684 |
ARIMA | 8.517 | 16.845 | 11.031 | 10.784 | 10.793 |
Prophet | 48.666 | 46.020 | 39.156 | 28.043 | 5.352 |
SVM | 11.144 | 16.274 | 12.207 | 7.648 | 5.636 |
Tab. 2 Performance comparison of different algorithms
MAPE/% | |||||
---|---|---|---|---|---|
LSTM-FI | 8.450 | 7.394 | 9.071 | 7.194 | 14.253 |
LSTM-noFI | 12.018 | 11.416 | 14.326 | 12.288 | 23.684 |
ARIMA | 8.517 | 16.845 | 11.031 | 10.784 | 10.793 |
Prophet | 48.666 | 46.020 | 39.156 | 28.043 | 5.352 |
SVM | 11.144 | 16.274 | 12.207 | 7.648 | 5.636 |
1 | 梁跃.基于机器学习的电力用户用电异常检测技术研究[D].北京:北京邮电大学,2019:1-2. |
LIANG Y. Research on electric anomaly detection technology for power users based on machine learning [D]. Beijing: Beijing University of Posts and Telecommunications, 2019:1-2. | |
2 | 张荣昌.基于数据挖掘的用电数据异常的分析与研究[D].北京:北京交通大学,2017:1-3. |
ZHANG R C. Analysis of abnormal electro-data based on data mining [D]. Beijing: Beijing Jiaotong University, 2017:1-3. | |
3 | 程海花,李晓明,黄军高,等.窃电检测在电能量计量计费系统中的应用[J].电力系统及其自动化学报,2001(6):53-57. 10.3969/j.issn.1003-8930.2001.06.014 |
CHENG H H, LI X M, HUANG J G, et al. Applying of detecting the theft of electricity in the power energy billing system [J]. Proceedings of the CSU-EPSA, 2001(6): 53-57. 10.3969/j.issn.1003-8930.2001.06.014 | |
4 | 付青,匡文凯,薛阳,等.基于高斯核密度估计法的路灯窃电检测方法[J].电力系统及其自动化学报, 2021,31(10):18-23. |
FU Q, KUANG W K, XUE Y, et al. Gauss kernel density estimation based detection of street lamp electricity theft [J]. Proceedings of the CSU-EPSA, 2021,31(10):18-23. | |
5 | 庄池杰,张斌,胡军,等.基于无监督学习的电力用户异常用电模式检测[J].中国电机工程学报,2016,36(2):379-387. |
ZHUANG C J, ZHANG B, HU J, et al. Anomaly detection for power consumption patterns based on unsupervised learning [J]. Proceedings of the CSEE, 2016, 36(2): 379-387. | |
6 | 田力,向敏.基于密度聚类技术的电力系统用电量异常分析算法[J].电力系统自动化,2017,41(5):64-70. 10.7500/AEPS20160510003 |
TIAN L, XIANG M. Abnormal power consumption analysis based on density-based spatial clustering of applications with noise in power systems [J]. Automation of Electric Power Systems, 2017, 41(5): 64-70. 10.7500/AEPS20160510003 | |
7 | MURTHY T S, GOPALAN N P, RAMACHANDRAN V. A Naive Bayes classifier for detecting unusual customer consumption profiles in power distribution systems—APSPDCL [C]// Proceedings of the 2019 3rd International Conference on Inventive Systems and Control. Piscataway: IEEE, 2019: 673-678. 10.1109/icisc44355.2019.9036460 |
8 | ESTEVES P R, VIEGAS J L, VIEIRA S M. Clustering-based novelty detection for identification of non-technical losses [J]. International Journal of Electrical Power & Energy Systems, 2018, 101: 301-310. 10.1016/j.ijepes.2018.03.031 |
9 | 刘士进,孙立华,郭鹏.基于EEDM-ARIMA算法的某地区电力系统负荷预测及算例分析[J].电子测量技术,2020,43(7):185-188. |
LIU S J, SUN L H, GUO P. Load forecasting and analysis of power system based on EEDM-ARIMA algorithm [J]. Electronic Measurement Technology, 2020, 43(7): 185-188. | |
10 | 李震,张思,任娴婷,等.基于数据驱动的线性聚类ARIMA长期电力负荷预测[J].科学技术与工程,2020,20(16):6497-6504. 10.3969/j.issn.1671-1815.2020.16.029 |
LI Z, ZHANG S, REN X T, et al. Long-term power load forecasting based on data-driven linear clustering ARIMA [J]. Science Technology and Engineering, 2020, 20(16):6497-6504. 10.3969/j.issn.1671-1815.2020.16.029 | |
11 | 彭湃,刘敏.基于Prophet-LSTM组合模型的短期负荷预测方法[J].电力系统及其自动化学报, 2021, 33(11): 15-20. |
PENG P, LIU M. Short-term load forecasting method based on Prophet-LSTM combined model [J]. Proceedings of the CSU-EPSA, 2021, 33(11): 15-20. | |
12 | 李玉凯,韩佳兵,王全,等.基于Fbprophet负荷预测与用户满意度约束的综合能源供能优先调度研究[J].华北电力大学学报(自然科学版), 2021, 48(5): 81-89. |
LI Y K, HAN J B, WANG Q, et al. Integrated energy load priority scheduling model based on Fbprophet prediction algorithm and customer satisfaction constraints [J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(5): 81-89. | |
13 | 王克杰,张瑞.基于改进BP神经网络的短期电力负荷预测方法研究[J].电测与仪表,2019,56(24):115-121. 10.46300/9106.2020.14.109 |
WANG K J, ZHANG R. Research on short-term power load forecasting method based on improved BP neural network [J]. Electrical Measurement & Instrumentation, 2019, 56(24): 115-121. 10.46300/9106.2020.14.109 | |
14 | 刘晓悦,孙海鹤.基于模糊灰色聚类AMPSO-BP短期负荷预测[J].微电子学与计算机,2019,36(5):70-75. |
LIU X Y, SUN H H. Short-term load forecasting based on fuzzy gray correlation clustering and AMPSO-BP neural network [J]. Microelectronics & Computer, 2019, 36(5): 70-75. | |
15 | 肖勇,郑楷洪,郑镇境,等.基于多尺度跳跃深度长短期记忆网络的短期多变量负荷预测[J].计算机应用,2021,41(1):231-236. 10.11772/j.issn.1001-9081.2020060929 |
XIAO Y, ZHENG K H, ZHENG Z J, et al. Multi-scale skip deep long short-term memory network for short-term multivariate load forecasting [J]. Journal of Computer Applications, 2021, 41(1): 231-236. 10.11772/j.issn.1001-9081.2020060929 | |
16 | 庄家懿,杨国华,郑豪丰,等.并行多模型融合的混合神经网络超短期负荷预测[J].电力建设,2020,41(10):1-8. 10.12204/j.issn.1000-7229.2020.10.001 |
ZHUANG J Y, YANG G H, ZHENG H F, et al. Ultra-short-term load forecasting using hybrid neural network based on parallel multi-model combination [J]. Electric Power Construction, 2020, 41(10): 1-8. 10.12204/j.issn.1000-7229.2020.10.001 | |
17 | 洪发.基于深度学习的短期电力负荷预测方法[D].广州:广东工业大学,2020:31-44. |
HONG F. Research on fault location of distribution network based on matrix method [D]. Guangzhou: Guangdong University of Technology, 2020:31-44. | |
18 | 李丹.基于多视角特征数据的股票预测研究[D].西安:西北大学,2018:11-13. |
LI D. Research on stock forecasting based on the multi-view feature data [D]. Xi’an: Northwest University, 2018:11-13. | |
19 | 胡博然.基于改进布林线与KDJ指标相结合的量化策略研究[D].哈尔滨:哈尔滨工业大学,2019:10-17. |
HU B R. Research on quantitative strategy based on improved Bollinger band and KDJ index [D]. Harbin: Harbin Institute of Technology, 2019:10-17. | |
20 | 刘瀚琳.基于数据挖掘的电力负荷预测与偏差预警[D].杭州:浙江大学,2009:7-24. 10.29252/jafm.12.03.28662 |
LIU H L. Power load forecasting and its deviation warning based on data mining [D]. Hangzhou: Zhejiang University, 2019:7-24. 10.29252/jafm.12.03.28662 | |
21 | 郑国和,贺民,郑瑞云,等.基于多表融合数据的用户短期用电量预测[J].电力系统及其自动化学报,2019,31(3):146-150. |
ZHENG G H, HE M, ZHENG R Y, et al. Short-term electricity consumption forecasting based on multi-meter data fusion [J]. Proceedings of the CSU-EPSA, 2019, 31(3): 146-150. |
[1] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[2] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[3] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[4] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[5] | Fan MENG, Qunli YANG, Jing HUO, Xinkuan WANG. EraseMTS: iterative active multivariable time series anomaly detection algorithm based on margin anomaly candidate set [J]. Journal of Computer Applications, 2024, 44(5): 1458-1463. |
[6] | Zimeng ZHU, Zhixin LI, Zhan HUAN, Ying CHEN, Jiuzhen LIANG. Weakly supervised video anomaly detection based on triplet-centered guidance [J]. Journal of Computer Applications, 2024, 44(5): 1452-1457. |
[7] | Yongjiang LIU, Bin CHEN. Pixel-level unsupervised industrial anomaly detection based on multi-scale memory bank [J]. Journal of Computer Applications, 2024, 44(11): 3587-3594. |
[8] | Pei ZHAO, Yan QIAO, Rongyao HU, Xinyu YUAN, Minyue LI, Benchu ZHANG. Multivariate time series anomaly detection based on multi-domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3419-3426. |
[9] | Xiaoyu HUA, Dongfen LI, You FU, Kejun BI, Shi YING, Ruijin WANG. Industrial chain risk assessment and early warning model combining hierarchical graph neural network and long short-term memory [J]. Journal of Computer Applications, 2024, 44(10): 3223-3231. |
[10] | Hui JIANG, Qiuyan YAN, Zhujun JIANG. Symmetric positive definite autoencoder method for multivariate time series anomaly detection [J]. Journal of Computer Applications, 2024, 44(10): 3294-3299. |
[11] | Lishuo YE, Zhixue HE. Multiscale time series anomaly detection incorporating wavelet decomposition [J]. Journal of Computer Applications, 2024, 44(10): 3300-3306. |
[12] | Yuhao TANG, Dezhong PENG, Zhong YUAN. Fuzzy multi-granularity anomaly detection for incomplete mixed data [J]. Journal of Computer Applications, 2024, 44(10): 3097-3104. |
[13] | Yuning ZHANG, Abudukelimu ABULIZI, Tisheng MEI, Chun XU, Maierdana MAIMAITIREYIMU, Halidanmu ABUDUKELIMU, Yutao HOU. Anomaly detection method for skeletal X-ray images based on self-supervised feature extraction [J]. Journal of Computer Applications, 2024, 44(1): 175-181. |
[14] | Li’an CHEN, Yi GUO. Text sentiment analysis model based on individual bias information [J]. Journal of Computer Applications, 2024, 44(1): 145-151. |
[15] | Zhiping ZHU, Yan YANG, Jie WANG. Scene graph-aware cross-modal image captioning model [J]. Journal of Computer Applications, 2024, 44(1): 58-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||