[1] WANG S, WANG G. Frequent items query algorithm for uncertain sensing data [J]. Chinese Journal of Computers, 2013, 36(3): 571-581.(王爽, 王国仁.面向不确定感知数据的频繁项查询算法[J].计算机学报, 2013, 36(3):571-581.) [2] CHAU M, CHENG R, KAO B, et al. Uncertain data mining: an example in clustering location data [C]//PAKDD 2006: Proceedings of the 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, LNCS 3918. Berlin: Springer, 2006: 199-204. [3] REN J, LEE S D, CHEN X, et al. Naive bayes classification of uncertain data [C]//ICDM'09: Proceedings of the 2009 Ninth IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2009: 944-949. [4] CHAU M, CHENG R, KAO B. Uncertain data mining: a new research direction [C]//WSA 2005: Proceedings of the 2005 Workshop on the Sciences of the Artificial. Hualien: [s.n.], 2005: 199-204. [5] LEUNG C K-S, MATEO M A F, BRAJCZUK D A. A tree-based approach for frequent pattern mining from uncertain data [C]//PAKDD 2008: Proceedings of the 12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, LNCS 5012. Berlin: Springer, 2008: 653-661. [6] LEUNG C K-S, TANBEER S K. Fast tree-based mining of frequent itemsets from uncertain data[C]//DASFAA 2012: Proceedings of the 17th International Conference on Database Systems for Advanced Applications, LNCS 7238. Berlin: Springer, 2012: 272-287. [7] LEUNG C K-S, TANBEER S K. PUF-tree: a compact tree structure for frequent pattern mining of uncertain data [C]//PAKDD 2013: Proceedings of the 17th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, LNCS 7818. Berlin: Springer, 2013: 13-25. [8] BERNECKER T, KRIEGEL H-P, RENZ M, et al. Probabilistic frequent itemset mining in uncertain databases [C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 119-128. [9] CHUI C-K, KAO B, HUNG E. Mining frequent itemsets from uncertain data [C]//PAKDD 2007: Proceedings of the 11th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining, LNCS 4426. Berlin: Springer, 2007: 47-58. [10] HAN J, PEI J, YIN Y, et al. Mining frequent patterns without candidate generation: A frequent-pattern tree approach [J]. Data Mining and Knowledge Discovery, 2004, 8(1): 53-87. [11] LIN C-W, HONG T-P. A new mining approach for uncertain databases using CUFP trees [J]. Expert Systems with Applications, 2012, 39(4): 4084-4093. [12] ZHOU A, JIN C, WANG G, et al. A survey on the management of uncertain data[J]. Chinese Journal of Computers, 2009, 32(1): 1-16.(周傲英, 金澈清, 王国仁, 等.不确定性数据管理技术研究综述[J].计算机学报, 2009, 32(1):1-16.) [13] AGGARWAL C C, YU P S. A survey of uncertain data algorithms and applications [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(5): 609-623. [14] WANG L, CHEUNG D W L, CHENG R, et al. Efficient mining of frequent item sets on large uncertain databases [J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(12): 2170-2183. [15] BERNECKER T, CHENG R, CHEUNG D W, et al. Model-based probabilistic frequent itemset mining [J]. Knowledge and Information Systems, 2013, 37(1): 181-217. |