[1] ZHANG Y, WANG L, YU J. Depth-image based on 3D map reconstruction of indoor environment for mobile robots [J]. Journal of Computer Applications, 2014, 34(12): 3438-3440. (张毅,汪龙峰,余佳航.基于深度信息的移动机器人室内环境三维地图创建[J].计算机应用,2014,34(12):3438-3440.) [2] LIN S, YUAN W, SONG H. Application of binary robust invariant scalable keypoints in non-contact palmprint recognition [J]. Chinese Journal of Scientific Instrument, 2013, 34(12): 2785-2792. (林森,苑玮琦,宋辉.二进制鲁棒不变尺度特征在非接触掌纹识别中的应用[J].仪器仪表学报,2013,33(12):2785-2792.) [3] ZHANG Y, ZOU Z. Automatic registration method for remote sensing images based on improved ORB algorithm [J]. Remote Sensing for Land and Resources, 2013, 25(3): 20-24. (张云生,邹峥嵘.基于改进ORB算法的遥感图像自动配准方法[J].国土资源遥感,2013,25(3):20-24.) [4] BOSTANCI E, KANWAL N, CLARK A F. Feature coverage for better homography estimation: an application to image stitching [C]//Proceedings of the 19th International Conference on Systems, Signals and Image Processing. Piscataway: IEEE, 2012: 448-451. [5] LOWE D G. Object recognition from local scale-invariant features [C]//Proceedings of the 1999 IEEE International Conference on Computer Vision. Piscataway: IEEE, 1999: 1150-1157. [6] BAY H, ESS A, TUYTELAARS T, et al. Speeded-Up Robust Features (SURF) [J]. Computer Vision and Image Understanding. 2008, 110(3): 346-359. [7] CALONDER M, LEPTETIT V, STRECHA C, et al. BRIEF: binary robust independent elementary features [C]//Proceedings of the 11th European Conference on Computer Vision. Berlin: Springer, 2010: 778-792. [8] LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK: binary robust invariant scalable keypoints [C]//Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2011: 2548-2555. [9] DU J. On characteristics of BRISK image registration extraction and description [J]. Journal of Shiyan Technical Institute, 2012, 25(1): 106-109. (杜军.基于BRISK特征的图像配准提取与描述研究[J].十堰职业技术学院学报,2012,25(1):106-109.) [10] SUO C, YANG D, LIU Y. Comparing SIFT, SURF, BRISK, ORB and FREAK in some different perspectives [J]. Beijing Surveying and Mapping, 2014(4): 23-26. (索春宝,杨东清,刘云鹏.多种角度比较SIFT、SURF、BRISK、ORB、FREAK算法[J].北京测绘,2014(4):23-26.) [11] MARI E, HAGER G D, BURSCHKA, et al. AGAST: adaptive and generic corner detection based on the accelerated segment test [C]//Proceedings of the 11th European Conference on Computer Vision. Berlin: Springer, 2010: 183-196. [12] ROSTEN E, PORTER R, DRUMMOND T. Faster and better: a machine learning approach to corner detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 105-119. [13] CAO J, XIE X, LIANG J, et al. Improved fast corner algorithm based on BRISK [J]. Ship Electronic Engineering, 2013, 33(5): 44-47. (曹建,谢晓方,梁捷,等.基于BRISK改进的快速角点特征算法[J].舰船电子工程,2013,33(5):44-47.) [14] ROSIN P L. Measuring corner properties [J]. Computer Vision and Image Understanding, 1999, 73(2): 291-307. [15] NASCIMENTO E R, OLIVEIRA G L, CAMPOS M F M, et al. BRAND: a robust appearance and depth descriptor for RGB-D images [C]//Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2012: 1720-1726. [16] HARRIS C, STEPHENS M. A combined corner and edge detector [C]//Proceedings of the 4th Alvey Vision Conference. Manchester: University of Manchester, 1988: 147-151. |