| [1] ZHANG S,LIANG G,PAN S,et al. A fast medical image super resolution method based on deep learning network[J]. IEEE Access,2019,7:12319-12327. [2] YANG X,WU W,LIU K,et al. Long-distance object recognition with image super resolution:a comparative study[J]. IEEE Access,2018,6:13429-13438.
 [3] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1981,29(6):1153-1160.
 [4] 符祥, 郭宝龙. 图像插值技术综述[J]. 计算机工程与设计, 2009,30(1):141-144,193.(FU X,GUO B L. Overview of image interpolation technology[J]. Computer Engineering and Design,2009,30(1):141-144,193.)
 [5] KARIMI E,KANGARLOO K,JAVADI S. A survey on superresolution methods for image reconstruction[J]. International Journal of Computer Applications,2014,90(3):32-39.
 [6] LU Z,WU C,CHEN D,et al. Overview on image super resolution reconstruction[C]//Proceedings of the 26th Chinese Control and Decision Conference. Piscataway:IEEE,2014:2009-2014.
 [7] 黄陶冶, 赵建伟, 周正华. 双层可变形卷积网络的超分辨率图像重建[J]. 计算机应用,2019,39(S2):68-74.(HUANG T Y, ZHAO J W,ZHOU Z H. Super-resolution image reconstruction using two-layer deformable convolution networks[J]. Journal of Computer Applications,2019,39(S2):68-74.)
 [8] WANG Z,LIU D,YANG J,et al. Deep networks for image superresolution with sparse prior[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:370-378.
 [9] 孙旭, 李晓光, 李嘉锋, 等. 基于深度学习的图像超分辨率复原研究进展[J]. 自动化学报,2017,43(5):697-709.(SUN X,LI X G,LI J F,et al. Review on deep learning based image superresolution restoration algorithms[J]. Acta Automatica Sinica, 2017,43(5):697-709.)
 [10] DONG C,LOY C C,HE K,et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307.
 [11] 南方哲, 钱育蓉, 行艳妮, 等. 基于深度学习的单图像超分辨率重建研究综述[J]. 计算机应用研究,2020,37(2):321-326. (NAN F Z,QIAN Y R,XING Y N,et al. Survey of single image super resolution based on deep learning[J]. Application Research of Computers,2020,37(2):321-326.)
 [12] LAI W S,HUANG J B,AHUJA N,et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5835-5843.
 [13] HA V K,REN J,XU X,et al. Deep learning based single image super-resolution:a survey[C]//Proceedings of the 9th International Conference on Brain Inspired Cognitive Systems, LNCS 10989. Cham:Springer,2018:106-119.
 [14] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680.
 [15] LEDIG C,THEIS L,HUSZÁR F,et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:105-114.
 [16] WANG X,YU K,WU S,et al. ESRGAN:enhanced superresolution generative adversarial networks[C]//Proceedings of the 15th European Conference on Computer Vision,LNCS 11133. Cham:Springer,2018:63-79.
 [17] WANG Y, PERAZZI F, MCWILLIAMS B, et al. A fully progressive approach to single-image super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2018:977-986.
 [18] LIM B,SON S,KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2017:1132-1140.
 [19] ISOLA P,ZHU J Y,ZHOU T,et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5967-5976.
 [20] LAN Z,LIN M,LI X,et al. Beyond Gaussian pyramid:multiskip feature stacking for action recognition[C]//Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:204-212.
 [21] BURT P,ADELSON E. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications,1983,31(4):532-540.
 [22] PARIS S,HASINOFF S W,KAUTZ J. Local Laplacian filters:edge-aware image processing with a Laplacian pyramid[J]. Communications of the ACM,2015,58(3):81-91.
 [23] DENTON E,CHINTALA S,SZLAM A,et al. Deep generative image models using a Laplacian pyramid of adversarial networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:1486-1494.
 [24] TONG T,LI G,LIU X,et al. Image super-resolution using dense skip connections[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:4809-4817.
 [25] SHI W,CABALLERO J,HUSZÁR F,et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1874-1883.
 [26] BIAN Y A,LI X,LIU Y,et al. Parallel coordinate descent newton method for efficient L1-regularized loss minimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(11):3233-3245.
 [27] BÜHLMANN P,YU B. Boosting with the L2 loss:regression and classification[J]. Journal of the American Statistical Association, 2003,98(462):324-339.
 [28] NICOLSON A,PALIWAL K K. Deep learning for minimum meansquare error approaches to speech enhancement[J]. Speech Communication,2019,111:44-55.
 |