Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (5): 1598-1606.DOI: 10.11772/j.issn.1001-9081.2021030532
• Multimedia computing and computer simulation • Previous Articles Next Articles
Jianmin ZHAO(), Cheng ZHAO, Haiguang XIA
Received:
2021-04-08
Revised:
2021-06-30
Accepted:
2021-06-30
Online:
2022-06-11
Published:
2022-05-10
Contact:
Jianmin ZHAO
About author:
ZHAO Jianmin, born in 1982,M. S.,associate professor. Hisresearch interests include image processing,machine learning.Supported by:
通讯作者:
赵建敏
作者简介:
赵建敏(1982—),男,内蒙古包头人,副教授,硕士,主要研究方向:图像处理、机器学习 zhao_jm@imust.edu.cn基金资助:
CLC Number:
Jianmin ZHAO, Cheng ZHAO, Haiguang XIA. Cattle body size measurement method based on Kinect v4[J]. Journal of Computer Applications, 2022, 42(5): 1598-1606.
赵建敏, 赵成, 夏海光. 基于Kinect v4的牛体尺测量方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1598-1606.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021030532
体尺项目 | 测量规定 |
---|---|
鬐甲高 | 由鬐甲最高点至地面的垂直距离 |
体斜长 | 肩胛前端至坐骨结节后端的直线距离 |
体直长 | 肩胛前端至坐骨结节后端的垂直线水平距离 |
臀端高 | 自坐骨结节后端至地面的距离 |
Tab. 1 Cattle body size measurement regulations
体尺项目 | 测量规定 |
---|---|
鬐甲高 | 由鬐甲最高点至地面的垂直距离 |
体斜长 | 肩胛前端至坐骨结节后端的直线距离 |
体直长 | 肩胛前端至坐骨结节后端的垂直线水平距离 |
臀端高 | 自坐骨结节后端至地面的距离 |
类别 | 训练集 | 测试集 |
---|---|---|
牛(cattle) | 0.961 | 0.965 |
牛头(head) | 0.981 | 0.985 |
躯干(body) | 0.969 | 0.972 |
牛尻(tail) | 0.899 | 0.915 |
关节(joint) | 0.920 | 0.942 |
牛足(hoof) | 0.948 | 0.949 |
Tab. 2 Average accuracy of each category on training set and test set
类别 | 训练集 | 测试集 |
---|---|---|
牛(cattle) | 0.961 | 0.965 |
牛头(head) | 0.981 | 0.985 |
躯干(body) | 0.969 | 0.972 |
牛尻(tail) | 0.899 | 0.915 |
关节(joint) | 0.920 | 0.942 |
牛足(hoof) | 0.948 | 0.949 |
部位 | x | y | 与 |
---|---|---|---|
坐骨端 | 12 | 4 | 8.263 |
16 | 6 | 4.001 | |
21 | 6 | 1.002 | |
23 | 7 | 3.141 | |
27 | 12 | 9.175 | |
鬐甲端 | 30 | 19 | 5.248 |
32 | 18 | 3.058 | |
35 | 17 | 0.404 | |
37 | 16 | 2.445 | |
41 | 15 | 6.464 | |
肩胛端 | 9 | 32 | 0.856 |
10 | 33 | 1.010 | |
13 | 38 | 6.516 | |
14 | 40 | 8.720 | |
16 | 43 | 12.325 |
Tab. 3 Some point set of key contour point set
部位 | x | y | 与 |
---|---|---|---|
坐骨端 | 12 | 4 | 8.263 |
16 | 6 | 4.001 | |
21 | 6 | 1.002 | |
23 | 7 | 3.141 | |
27 | 12 | 9.175 | |
鬐甲端 | 30 | 19 | 5.248 |
32 | 18 | 3.058 | |
35 | 17 | 0.404 | |
37 | 16 | 2.445 | |
41 | 15 | 6.464 | |
肩胛端 | 9 | 32 | 0.856 |
10 | 33 | 1.010 | |
13 | 38 | 6.516 | |
14 | 40 | 8.720 | |
16 | 43 | 12.325 |
类别 | 深度值/mm | |||||
---|---|---|---|---|---|---|
坐骨端 | 4 492 | 4 494 | 4 492 | 4 495 | 4 486 | |
0 | 0 | 0 | 0 | 0 | ||
0 | 2 306 | 0 | 0 | 0 | ||
2 320 | 2 320 | 2 318 | 2 308 | 0 | ||
2 323 | 2 325 | 2 327 | 2 321 | 2 317 | ||
鬐甲端 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | ||
0 | 2 252 | 2 248 | 2 250 | 2 249 | ||
2 242 | 2 247 | 2 243 | 2 247 | 2 243 | ||
肩胛端 | 2 290 | 2 288 | 2 286 | 2 282 | 2 279 | |
2 292 | 2 290 | 2 288 | 2 285 | 2 282 | ||
2 293 | 2 292 | 2 290 | 2 286 | 2 283 | ||
2 294 | 2 293 | 2 292 | 2 288 | 2 285 | ||
2 296 | 2 295 | 2 293 | 2 290 | 2 288 |
Tab. 4 Depth value of measuring points and points around them
类别 | 深度值/mm | |||||
---|---|---|---|---|---|---|
坐骨端 | 4 492 | 4 494 | 4 492 | 4 495 | 4 486 | |
0 | 0 | 0 | 0 | 0 | ||
0 | 2 306 | 0 | 0 | 0 | ||
2 320 | 2 320 | 2 318 | 2 308 | 0 | ||
2 323 | 2 325 | 2 327 | 2 321 | 2 317 | ||
鬐甲端 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | ||
0 | 2 252 | 2 248 | 2 250 | 2 249 | ||
2 242 | 2 247 | 2 243 | 2 247 | 2 243 | ||
肩胛端 | 2 290 | 2 288 | 2 286 | 2 282 | 2 279 | |
2 292 | 2 290 | 2 288 | 2 285 | 2 282 | ||
2 293 | 2 292 | 2 290 | 2 286 | 2 283 | ||
2 294 | 2 293 | 2 292 | 2 288 | 2 285 | ||
2 296 | 2 295 | 2 293 | 2 290 | 2 288 |
实验序号 | 偏角/(°) | 实测值/mm | 检测值/mm | 相对误差/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BH | BS | BO | HH | BH | BS | BO | HH | BH | BS | BO | HH | ||
平均值 | — | 1 054 | 1 193 | 1 125 | 982 | 1 046.21 | 1 202.45 | 1 121.79 | 987.15 | 0.76 | 1.68 | 2.14 | 0.76 |
1 | 15 | 1 054 | 1 193 | 1 125 | 982 | 1 040.93 | 1 168.74 | 1 089.64 | 990.53 | 1.24 | 2.03 | 3.14 | 0.87 |
2 | 12 | 1 054 | 1 193 | 1 125 | 982 | 1 041.79 | 1 178.50 | 1 107.28 | 986.17 | 1.16 | 1.22 | 1.57 | 0.42 |
3 | 9 | 1 054 | 1 193 | 1 125 | 982 | 1 054.97 | 1 195.28 | 1 131.19 | 977.02 | 0.09 | 0.19 | 0.55 | 0.51 |
4 | 6 | 1 054 | 1 193 | 1 125 | 982 | 1 051.77 | 1 190.19 | 1 104.51 | 987.78 | 0.21 | 0.24 | 1.82 | 0.59 |
5 | 3 | 1 054 | 1 193 | 1 125 | 982 | 1 043.44 | 1 181.22 | 1 122.38 | 994.54 | 1.00 | 0.99 | 0.23 | 1.28 |
6 | 0 | 1 054 | 1 193 | 1 125 | 982 | 1 046.72 | 1 216.81 | 1 123.19 | 977.67 | 0.69 | 2.00 | 0.16 | 0.44 |
7 | 1 054 | 1 193 | 1 125 | 982 | 1 046.99 | 1 226.33 | 1 159.70 | 978.86 | 0.67 | 2.79 | 3.08 | 0.32 | |
8 | 1 054 | 1 193 | 1 125 | 982 | 1 048.26 | 1 197.63 | 1 093.63 | 986.73 | 0.54 | 0.39 | 2.79 | 0.48 | |
9 | 1 054 | 1 193 | 1 125 | 982 | 1 047.41 | 1 187.94 | 1 084.48 | 993.44 | 0.63 | 0.42 | 3.60 | 1.17 | |
10 | 1 054 | 1 193 | 1 125 | 982 | 1 043.58 | 1 235.07 | 1 133.53 | 1 002.55 | 0.99 | 3.53 | 0.76 | 2.09 | |
11 | 1 054 | 1 193 | 1 125 | 982 | 1 042.45 | 1 249.29 | 1 190.17 | 983.40 | 1.10 | 4.72 | 5.79 | 0.14 |
Tab. 5 Result comparison of measuring body size by manual and proposed methods
实验序号 | 偏角/(°) | 实测值/mm | 检测值/mm | 相对误差/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BH | BS | BO | HH | BH | BS | BO | HH | BH | BS | BO | HH | ||
平均值 | — | 1 054 | 1 193 | 1 125 | 982 | 1 046.21 | 1 202.45 | 1 121.79 | 987.15 | 0.76 | 1.68 | 2.14 | 0.76 |
1 | 15 | 1 054 | 1 193 | 1 125 | 982 | 1 040.93 | 1 168.74 | 1 089.64 | 990.53 | 1.24 | 2.03 | 3.14 | 0.87 |
2 | 12 | 1 054 | 1 193 | 1 125 | 982 | 1 041.79 | 1 178.50 | 1 107.28 | 986.17 | 1.16 | 1.22 | 1.57 | 0.42 |
3 | 9 | 1 054 | 1 193 | 1 125 | 982 | 1 054.97 | 1 195.28 | 1 131.19 | 977.02 | 0.09 | 0.19 | 0.55 | 0.51 |
4 | 6 | 1 054 | 1 193 | 1 125 | 982 | 1 051.77 | 1 190.19 | 1 104.51 | 987.78 | 0.21 | 0.24 | 1.82 | 0.59 |
5 | 3 | 1 054 | 1 193 | 1 125 | 982 | 1 043.44 | 1 181.22 | 1 122.38 | 994.54 | 1.00 | 0.99 | 0.23 | 1.28 |
6 | 0 | 1 054 | 1 193 | 1 125 | 982 | 1 046.72 | 1 216.81 | 1 123.19 | 977.67 | 0.69 | 2.00 | 0.16 | 0.44 |
7 | 1 054 | 1 193 | 1 125 | 982 | 1 046.99 | 1 226.33 | 1 159.70 | 978.86 | 0.67 | 2.79 | 3.08 | 0.32 | |
8 | 1 054 | 1 193 | 1 125 | 982 | 1 048.26 | 1 197.63 | 1 093.63 | 986.73 | 0.54 | 0.39 | 2.79 | 0.48 | |
9 | 1 054 | 1 193 | 1 125 | 982 | 1 047.41 | 1 187.94 | 1 084.48 | 993.44 | 0.63 | 0.42 | 3.60 | 1.17 | |
10 | 1 054 | 1 193 | 1 125 | 982 | 1 043.58 | 1 235.07 | 1 133.53 | 1 002.55 | 0.99 | 3.53 | 0.76 | 2.09 | |
11 | 1 054 | 1 193 | 1 125 | 982 | 1 042.45 | 1 249.29 | 1 190.17 | 983.40 | 1.10 | 4.72 | 5.79 | 0.14 |
1 | 张智慧,李伟,韩永胜.牛体尺影响因素及其应用[J].中国畜牧杂志,2018,54(1):9-13. 10.19556/j.0258-7033.2018-01-009 |
ZHANG Z H, LI W, HAN Y S. Influence factors and applications for body size of cattle [J]. Chinese Journal of Animal Science, 2018, 54(1): 9-13. 10.19556/j.0258-7033.2018-01-009 | |
2 | 王永智.牛的外貌鉴定、体尺测量及体重估测[J].养殖技术顾问,2013(12):20. |
WANG Y Z. Appearance identification, body size measurement and weight estimation of cattle [J]. Technical Advisor for Animal Husbandry, 2013(12): 20. | |
3 | 陆蓉,胡肄农,黄小国,等.智能化畜禽养殖场人工智能技术的应用与展望[J].天津农业科学,2018,24(7):34-40. 10.3969/j.issn.1006-6500.2018.07.008 |
LU R, HU Y N, HUANG X G, et al. Application and prospect of artificial intelligence technology in intelligent livestock and poultry farms [J]. Tianjin Agricultural Sciences, 2018, 24(7): 34-40. 10.3969/j.issn.1006-6500.2018.07.008 | |
4 | 江杰,周丽娜,李刚.基于机器视觉的羊体体尺测量[J].计算机应用,2014,34(3):846-850,887. 10.11772/j.issn.1001-9081.2014.03.0846 |
JIANG J, ZHOU L N, LI G. Sheep body size measurement based on computer vision [J]. Journal of Computer Applications, 2014, 34(3): 846-850, 887. 10.11772/j.issn.1001-9081.2014.03.0846 | |
5 | 刘同海,滕光辉,付为森,等.基于机器视觉的猪体体尺测点提取算法与应用[J].农业工程学报,2013,29(2):161-168. 10.3969/j.issn.1002-6819.2013.02.023 |
LIU T H, TENG G H, FU W S, et al. Extraction algorithms and applications of pig body size measurement points based on computer vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 161-168. 10.3969/j.issn.1002-6819.2013.02.023 | |
6 | 常海天.种牛体尺非接触测量系统研究[D].长春:长春工业大学,2018:22-54. 10.7546/ijba.2018.22.4.349-362 |
CHANG H T. The study on the non-contact measurement system of cattle body [D]. Changchun: Changchun University of Technology, 2018: 22-54. 10.7546/ijba.2018.22.4.349-362 | |
7 | 赵建敏,赵忠鑫,李琦.基于Kinect传感器的羊体体尺测量方法[J].江苏农业科学,2015,43(11):495-499. 10.3390/coatings11111310 |
ZHAO J M, ZHAO Z X, LI Q. Sheep body size measurement method based on Kinect sensor [J]. Jiangsu Agricultural Sciences, 2015, 43(11): 495-499. 10.3390/coatings11111310 | |
8 | 冯恬.非接触牛体测量系统构建与实现[D].杨凌:西北农林科技大学,2014:22-39. |
FENG T. Constructing and implementing for non-touch measurement system of cattle body [D]. Yangling: Northwest A&F University, 2014: 22-39. | |
9 | 李琦,刘伟,赵建敏.基于双目视觉及Mask RCNN的牛体尺无接触测量[J].黑龙江畜牧兽医,2020(12):46-50,159-160. |
LI Q, LIU W, ZHAO J M. Non-contact measurement of bovine body size based on binocular vision and Mask RCNN [J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(12): 46-50, 159-160. | |
10 | LI L. Time-of-flight camera — an introduction [R]. Dallas, Texas: Texas Instruments, 2014. |
11 | JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytics/yolov5: v4.0-nn.SiLU() activations, Weights & Biases logging, PyTorch Hub integration [EB/OL]. [2021-01-15]. . |
12 | FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981, 24(6): 381-395. 10.1145/358669.358692 |
13 | YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: an advanced object detection network [C]// Proceedings of the 2016 24th ACM International Conference on Multimedia. New York: ACM, 2016: 516-520. 10.1145/2964284.2967274 |
14 | HARRIS C R, MILLMAN K J, WALT S J VAN DER, et al. Array programming with NumPy [J]. Nature, 2020, 585(7825): 357-362. 10.1038/s41586-020-2649-2 |
15 | BRADSKI G. The openCV library [J]. Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 2000, 25(11):120-123. |
16 | CANNY J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698. 10.1109/tpami.1986.4767851 |
17 | SUZUKI S, ABE K. Topological structural analysis of digitized binary images by border following [J]. Computer Vision, Graphics, and Image Processing, 1985, 30(1): 32-46. 10.1016/0734-189x(85)90016-7 |
18 | 燕霞.海倫-秦九韶公式[J].数学通报,1955(3):4. |
YAN X. Heron-Qin Jiushao formula [J]. Journal of Mathematics (China), 1955(3): 4. |
[1] | Zhangjian JI, Na DU. Tiny target detection based on improved VariFocalNet [J]. Journal of Computer Applications, 2024, 44(7): 2200-2207. |
[2] | Yuanjiong LIU, Maozheng HE, Yibin HUANG, Cheng QIAN. Ship identification model based on ResNet50 and improved attention mechanism [J]. Journal of Computer Applications, 2024, 44(6): 1935-1941. |
[3] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[4] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. |
[5] | Yuliang ZHENG, Yunhua CHEN, Weijie BAI, Pinghua CHEN. Vehicle target detection by fusing event data and image frames [J]. Journal of Computer Applications, 2024, 44(3): 931-937. |
[6] | Cunyi LIAO, Yi ZHENG, Weijin LIU, Huan YU, Shouyin LIU. Decoupling-fusing algorithm for multiple tasks with autonomous driving environment perception [J]. Journal of Computer Applications, 2024, 44(2): 424-431. |
[7] | Yudong PANG, Zhixing LI, Weijie LIU, Tianhao LI, Ningning WANG. Small target detection model in overlooking scenes on tower cranes based on improved real-time detection Transformer [J]. Journal of Computer Applications, 2024, 44(12): 3922-3929. |
[8] | Li ZENG, Jingru YANG, Gang HUANG, Xiang JING, Chaoran LUO. Survey on hypergraph application methods: issues, advances, and challenges [J]. Journal of Computer Applications, 2024, 44(11): 3315-3326. |
[9] | Lin WANG, Jingliang LIU, Wuwei WANG. Small target detection method in UAV images based on fusion of dilated convolution and Transformer [J]. Journal of Computer Applications, 2024, 44(11): 3595-3602. |
[10] | Dahai LI, Bingtao LI, Zhendong WANG. Underwater target detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(11): 3610-3616. |
[11] | Kunting LU, Rongrong FEI, Xuande ZHANG. Remote sensing image pansharpening by convolutional neural network [J]. Journal of Computer Applications, 2023, 43(9): 2963-2969. |
[12] | Junyu YANG, Yan DONG, Zhennan LONG, Xin YANG, Bin HAN. Rain detection algorithm based on event camera [J]. Journal of Computer Applications, 2023, 43(9): 2904-2909. |
[13] | Meijia LIANG, Xinwu LIU, Xiaopeng HU. Small target detection algorithm for train operating environment image based on improved YOLOv3 [J]. Journal of Computer Applications, 2023, 43(8): 2611-2618. |
[14] | Yuanlong ZHAO, Yugang SHAN, Jie YUAN, Kangdi ZHAO. Object tracking based on instance segmentation and Pythagorean fuzzy decision-making [J]. Journal of Computer Applications, 2023, 43(6): 1930-1937. |
[15] | Yue CHI, Zhengping LI, Chao XU, Bo FENG. Highlight removal algorithm for medical endoscopic images [J]. Journal of Computer Applications, 2023, 43(4): 1278-1283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||