[1] DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]//CVPR 2014:Proceedings of the 2014 Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:1090-1097. [2] HENRIQUES J F, CASEIRO R, MARTINS P. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3):583-596. [3] ZHANG K, ZHANG L, LIU Q, et al. Fast visual tracking via dense spatio-temporal context learning[C]//ECCV 2014:Proceedings of the 13th European Conference on Computer Vision, LNCS 8693. Berlin:Springer, 2014:127-141. [4] PENG S, PENG X. Object tracking with efficient multiple instance learning[J]. Journal of Computer Applications, 2015, 35(2):466-469. (彭爽,彭晓明.基于高效多示例学习的目标跟踪[J].计算机应用,2015,35(2):466-469.) [5] ZHONG W. Robust object tracking via sparsity-based collaborative model[C]//CVPR 2012:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2012:1838-1845. [6] ROSS D, LIM J, LIN R-S, et al.Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1/2/3):125-141. [7] MENG J, LIU J, HAN M. Marginalized particle filter for combined feature target-tracking[J]. Journal of Application Research of Computers, 2015, 32(7):135-144. (孟军英,刘教民,韩明.基于联合特征的边缘粒子滤波目标跟踪算法研究[J].计算机应用研究,2015,32(7):135-144.) [8] YANG F, LU H, YANG M. Robust super-pixel tracking[J]. IEEE Transaction on Image Processing, 2014, 23(4):1639-1651. [9] BABENKO B, YANG M-H, BELONGIE S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1619-1632. [10] YANG F, LU H, YANG M. Robust visual tracking via multiple kernel boosting with affinity constraints[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(2):242-254. [11] ZHANG K, ZHANG L, YANG M. Real-time object tracking via online discriminative feature selection[J]. IEEE Transactions on Image Processing, 2013, 22(12):4664-4677. [12] BOLME D, BEVERIDGE J, B DRAPER, et al.Visual object tracking using adaptive correlation filters[C]//CVPR 2010:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2010:2544-2550. [13] HENRIQUES J, CASEIRO R, MARTINS P, et al.Exploiting the circulant structure of tracking-by-detection with kernels[C]//ECCV 2012:Proceedings of the 2012 European Conference on Computer Vision. Berlin:Springer, 2012:702-715. [14] RIFKIN R, YEO G, POGGIO T. Regularized least-squares classification[M]//Advances in Learning Theory:Methods, Models and Applications. Amsterdam:IOS Press, 2003:131-154. [15] MESSERSCHMITT D G. Stationary points of a real-valued function of a complex variable, UCB/EECS-2006-93[R]. Berkeley:University of California, EECS Department, 2006:1-8 [16] KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422. [17] JIA X, LU H, YANG M. Visual tracking via adaptive structural local sparse appearance model[C]//CVPR 2012:Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2012:1822-1829. [18] ADAM A, RIVLIN E, SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]//CVPR 2006:Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2006:798-805. [19] HARE S, SAFFARI A, TORR P H S. Struck:structured output tracking with kernels[C]//ICCV 2011:Proceedings of the 2011 International Conference on Computer Vision. Piscataway:IEEE, 2011:263-270. [20] WU Y, LIM J, YANG M. Online object tracking:a benchmark[C]//CVPR 2013:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2013:2411-2418. |