[1] CORMACK G V. Email spam filtering: a systematic review [J]. Foundations and trends in information retrieval, 2007, 1(4): 335-455. [2] ALMEIDA T A, YAMAKAMI A. Advances in spam filtering techniques [M]// Computational Intelligence for Privacy and Security. Berlin: Springer, 2012: 199-214. [3] CHOUHAN S. Behavior analysis of SVM based spam filtering using various kernel functions and data representations [J]. International journal of engineering research and technology, 2013, 2(9): 3029-3036. [4] 张艳秋,王蔚.利用遗传算法优化的支持向量机垃圾邮件分类[J].计算机应用,2009,29(10):2755-2757.(ZHANG Y Q, WANG W. E-mail classification by SVM optimized with genetic algorithm [J]. Journal of computer applications, 2009, 29(10): 2755-2757.) [5] 李鹏.图像型垃圾邮件过滤关键技术研究[D].哈尔滨:哈尔滨工业大学,2013.(LI P. Research on key technologies of image spam filtering [D]. Harbin: Harbin Institute of Technology, 2013.) [6] PUNISKIS D, LAURUTIS R, DIRMEIKIS R. An artificial neural nets for spam E-mail recognition [J]. Electronics and electrical engineering, 2006, 69(5): 73-76. [7] 郭守团,徐志根.基于BP神经网络的垃圾邮件过滤器研究[J].计算机安全,2009,10(12):20-23.(GUO S T, XU Z G. Spam filtering based on bp neural network [J]. Computer security, 2009, 10(12): 20-23.) [8] BENGIO Y. Learning deep architectures for AI [J]. Foundations and trends in machine learning, 2009, 2(1): 1-127. [9] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives [J]. Pattern analysis and machine intelligence, 2013, 35(8): 1798-1828. [10] 孙劲光,蒋金叶,孟祥福,等.深度置信网络在垃圾邮件过滤中的应用[J].计算机应用,2014,34(4):1122-1125.(SUN J G, JIANG J Y, MENG X F, et al. Application of deep belief nets in spam filtering [J]. Journal of computer applications, 2014, 34(4): 1122-1125.) [11] TZORTZIS G, LIKAS A. Deep belief networks for spam filtering [C]// ICTAI 2007: Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence. Piscataway, NJ: IEEE, 2007: 306-309. [12] VINCENT P, LAROCGELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders [C]// Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008: 1096-1103. [13] RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders: explicit invariance during feature extraction [C]// Proceedings of the 28th International Conference on Machine Learning. New York: ACM, 2011: 833-840. [14] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting [J]. The journal of machine learning research, 2014, 15(1): 1929-1958. [15] LE ROUX N, BENGIO Y. Representational power of restricted Boltzmann machines and deep belief networks [J]. Neural computation, 2008, 20(6): 1631-1649. [16] LAROCHELLE H, ERHAN D, COURVILLE A, et al. An empirical evaluation of deep architectures on problems with many factors of variation [C]// Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007: 473-480. [17] ALMEIDA T A, YAMAKAMI A. Content-based spam filtering [C]// Proceedings of the 2010 International Joint Conference on Neural Networks. Piscataway, NJ: IEEE, 2010: 1-7. |