[1] 周煜,张万冰,杜发荣,等.散乱点云数据的曲率精简算法[J].北京理工大学学报,2010,30(7):785-790.(ZHOU Y, ZHANG W B, DU F R, et al. Algorithm for reduction of scattered point cloud data based on curvature[J].Transactions of Beijing Institute of Technology, 2010, 30(7):785-790.) [2] 李义琛,庞明勇.基于二次误差度量的点云简化[J].小型微型计算机系统,2012,33(11):2538-2543.(LI Y C, PANG M Y. Decimating point cloud based on quadric error metric[J]. Journal of Chinese Computer Systems, 2012, 33(11):2538-2543.) [3] 王先泽,李忠科,张晓娟,等.特征保持的基于紧支径向基函数的点云简化[J].计算机工程与设计,2013,34(1):201-206.(WANG X Z, LI Z K, ZHANG X J, et al. Feature preserving simplification of point cloud based on CSRBF[J]. Computer Engineering and Design, 2013, 34(1):201-206.) [4] 胡志胜,于敬武,述涛.一种结合了栅格化和特征判断的点云压缩方法[J].辽宁工程技术大学(自然科学版),2015,34(8):958-963.(HU Z S, YU J W, SHU T.A point cloud compression approach combined with rasterizing and feature estimate[J]. Journal of Liaoning Technical University (Natural Science), 2015, 34(8):958-963.) [5] 邢正全,邓喀中,薛继群.基于栅格划分和法向量估计得点云数据压缩[J].测绘通报,2012(7):50-54.(XING Z Q, DENG K Z, XUE J Q. Point cloud data compression based on grid division and normal vector estimation[J]. Bulletin of Surveying and Mapping, 2012(7):50-54.) [6] 邵正伟,席平.基于八叉树编码的点云数据精简方法[J].工程图学学报,2010,31(4):73-77.(SHAO Z W, XI P. Data reduction for point cloud using octree coding[J]. Journal of Engineering Graphics, 2010, 31(4):73-77.) [7] 赵开勇,汪朝辉.大规模并行处理器编程实战[M].2版.北京:清华大学出版社,2013:36-40.(ZHAO K Y, WANG C H. Programming Massively Parallel Processors:a Hands-on Approach[M]. 2nd ed. Beijing:Tsinghua University Press, 2013:36-40.) [8] 崔放,徐宏根,王宗跃.基于GPGPU的并行LiDAR点云滤波算法[J].华中师范大学学报(自然科学版版),2014,48(3):431-436.(CUI F, XU H G, WANG Z Y. A point cloud filtering algorithm based on GPGPU parallel computing[J].Journal of Huazhong Normal University (Natural Science), 2014, 48(3):431-436.) [9] 唐杰,徐波,宫中樑,等.一种基于CUDA的三维点云快速光顺算法[J].系统仿真学报,2012,24(8):1633-1638.(TANG J, XU B, GONG Z L, et al. Fast fairing of 3D point cloud using CUDA[J].Journal of System Simulation, 2012, 24(8):1633-1638.) [10] PARK H T, CHANG M H, PARK S C. A slicing algorithm of point cloud for rapid prototyping[C]//Proceedings of the 2007 Summer Computer Simulation Conference. San Diego, CA:Society for Computer Simulation International, 2007:Article No. 24. [11] SHIN H, PARK S. Direct slicing of a point set model for rapid prototyping[J]. Computer-Aided Design and Applications, 2004, 1(1/2/3/4):109-115. [12] PERCOCO G, GALANTUCCI L. Local-genetic slicing of point clouds for rapid prototyping[J]. Rapid Prototyping Journal, 2008, 14(3):161-166. [13] 方芳,程效军.海量散乱点云快速压缩算法[J].武汉大学学报(信息科学版),2013,38(11):1353-1357.(FANG F, CHENG X J. A fast reduction method for massive scattered point cloud based on slicing[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11):1353-1357.) [14] 徐工,程效军.基于小波技术的散乱点云自适应压缩算法[J].同济大学学报(自然科学版),2013,41(11):1738-1743.(XU G, CHENG X J. Adaptive reduction algorithm of scattered point clouds based on wavelet technology[J]. Journal of Tongji University (Natural Science), 2013, 41(11):1738-1743.) |