[1] 王立才, 孟祥武, 张玉洁.上下文感知推荐系统[J]. 软件学报, 2012, 23(1):1-20.(WANG L C, MENG X W, ZHANG Y J. Context-aware recommender systems: a survey of the state-of-the-art and possible extensions[J]. Journal of Software, 2012, 23(1):1-20. [2] 黄创光, 印鉴, 汪静, 等. 不确定近邻的协同过滤推荐算法[J]. 计算机学报, 2010, 33(8):1369-1377.(HUANG C G, YIN J, WANG J, et al. Uncertain neighbors' collaborative filtering recommendation algorithm[J]. Chinese Journal of Computers, 2010, 33(8):1369-1377.) [3] OZSOY M G, POLAT F. Trust based recommendation systems[C]//WWW 2008: Proceedings of the 17th International Conference on World Wide Web. New York: ACM, 2013:1267-1274. [4] SHAMBOUR Q, LU JIE. A trust-semantic fusion-based recommendation approach for e-business applications[J]. Decision Support Systems, 2012, 54(1):768-780. [5] LI Y M, WU C T, LAI C Y. A social recommender mechanism for e-commerce combining similarity, trust, and relationship[J]. Decision Support Systems, 2013, 55(3):740-752. [6] 郝立燕, 王靖. 基于填充和相似性信任因子的协同过滤推荐算法[J]. 计算机应用, 2013, 33 (3):834-837.(HAO L Y, WANG J. Collaborative filtering recommendation algorithm based on filling and similarity confidence factor[J]. Journal of Computer Applications, 2013, 33(3):834-837.) [7] 邹本友, 李翠平, 谭力文, 等. 基于用户信任和张量分解的社会网络推荐[J]. 软件学报, 2014, 25(12):2852-2864.(ZOU B Y, LI C P, TAN L W, et al. Social recommendations based on user trust and tensor factorization[J]. Journal of Software, 2014, 25(12): 2852-2864.) [8] 秦继伟, 郑庆华, 郑德立, 等. 评分和信任的协同推荐算法[J]. 西安交通大学学报, 2013, 47(4):100-104.(QIN J W, ZHENG Q H, ZHENG D L, et al. A collaborative recommendation algorithm based on rating and trust[J]. Journal of Xi'an Jiaotong University, 2013, 47(4): 100-104.) [9] 杨兴耀, 于炯, 吐尔根·依布拉音, 等.基于信任模型填充的协同过滤推荐模型[J]. 计算机工程, 2015, 41(5):6-13.(YANG X Y, YU J, IBRAHIM T, et al. Collaborative filtering recommendation model based on trust model filling[J]. Computer Engineering, 2015, 41(5):6-13.) [10] 文俊浩, 舒珊. 一种改进相似性度量的协同过滤推荐算法[J]. 计算机科学, 2014, 41(5):68-71.(WEN J H, SHU S. Improved collaborative filtering recommendation algorithm of similarity measure[J]. Computer Science, 2014, 41(5):68-71.) [11] 范波, 程久军.用户间多相似度协同过滤推荐算法[J]. 计算机科学, 2012, 39(1):23-26.(FAN B, CHENG J J. Collaborative filtering recommendation algorithm based on user' multi-similarity[J]. Computer Science, 2012, 39(1):23-26.) [12] 冷亚军, 陆青, 梁昌勇. 基于结构相似性的协同过滤推荐算法[J]. 小型微型计算机系统, 2015, 36(10):2266-2269.(LENG Y J, LU Q, LIANG C Y. Collaborative filtering recommendation algorithm based on structure similarity[J]. Journal of Chinese Computer Systems, 2015, 36(10):2266-2269.) [13] CHOI K, SUH Y. A new similarity function for selecting neighbors for each target item in collaborative filtering[J]. Knowledge-Based Systems, 2013, 37(1):146-153. [14] 朱锐, 王怀民, 冯大为. 基于偏好推荐的可信服务选择[J]. 软件学报, 2011, 22(5):852-864.(ZHU R, WANG H M, FENG D W. Trustworthy services selection based on preference recommendation[J]. Journal of Software, 2011, 22(5): 852-864.) [15] 王磊, 赵庆建, 罗兴峰.基于项目相关度的STI新群体冷启动推荐方法[J]. 小型微型计算机系统, 2015, 36(3):450-453.(WANG L, ZHAO Q J, LUO X F. Degree of item correlation based STI for new community cold start recommendation[J]. Journal of Chinese Computer Systems, 2015, 36(3):450-453.) [16] BOBADILLA J, ORTEGA F, HERNANDO A. A collaborative filtering similarity measure based on singularities [J]. Information Processing and Management, 2011, 48(2):204-217. [17] 夏小伍, 王卫平. 基于信任模型的协同过滤推荐算法[J]. 计算机工程, 2011, 37(21):26-28.(XIA X W, WANG W P. Collaborative filtering recommendation algorithm based on trust model[J]. Computer Engineering, 2011, 37(21):26-28.) [18] 王茜, 王锦华. 结合信任机制和用户偏好的协同过滤推荐算法[J]. 计算机工程与应用, 2015, 51(10):261-270.(WANG Q, WANG J H. Collaborative filtering algorithm combining trust mechanism with user preference[J]. Computer Engineering and Applications, 2015, 51 (10):261-270.) [19] 张珺, 刘靖, 叶新铭, 等. 基于CPN 的可信路由器发现协议建模与仿真分析[J]. 系统仿真学报, 2012, 24(1):1-7.(ZHAGN J, LIU J, YE X M, et al. Modeling and simulation of trusted router discovery protocol using colored Petri nets[J]. Journal of System Simulation, 2012, 24(1):1-7.) [20] 于洪, 李俊华. 一种解决新项目冷启动问题的推荐算法[J]. 软件学报, 2015, 26(6):1396-1406).(YU H, LI J H. Algorithm to solve the cold-problem in new item recommendation[J]. Journal of Software, 2015, 26(6):1396-1406.) |