[1] 中国互联网络信息中心. 第45次中国互联网络发展状况统计报告[EB/OL].[2019-09-12]. http://www.cac.gov.cn/2020-04/27/c_1589535470378587.htm. (China Internet Network Information Center. The 45th China statistical report on Internet development[EB/OL].[2019-09-12]. http://www.cac.gov.cn/2020-04/27/c_1589535470378587.htm.) [2] 朱扬勇, 孙婧. 推荐系统研究进展[J]. 计算机科学与探索, 2015,9(5):513-525.(ZHU Y Y,SUN J. Recommender system:up to now[J]. Journal of Frontiers of Computer Science and Technology,2015,9(5):513-525.) [3] JAMALI M,ESTER M. A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the 4th ACM Conference on Recommender Systems. New York:ACM,2010:135-142. [4] LI S, KAWALE J, FU Y. Deep collaborative filtering via marginalized denoising auto-encoder[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York:ACM,2015:811-820. [5] ZHAO H,YAO Q,LI J,et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2017:635-644. [6] SHI C, ZHANG Z, LUO P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York:ACM,2015:453-462. [7] SUN Y,HAN J,YAN X,et al. PathSim:meta path-based top-k similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment,2011,4(11):992-1003. [8] KIM Y. Convolutional neural networks for sentence classification[EB/OL].[2019-10-03]. https://arxiv.org/pdf/1408.5882.pdf. [9] HONG L, DOUMITH A S, DAVISON B D. Co-factorization machines:modeling user interests and predicting individual decisions in Twitter[C]//Proceedings of the 6th ACM International Conference on Web Search and Data Mining. New York:ACM, 2013:557-566. [10] HOPFGARTNER F, KILLE B, HEINTZ T, et al. Real-time recommendation of streamed data[C]//Proceedings of the 9th ACM Conference on Recommender Systems. New York:ACM, 2015:361-362. [11] VALL A,DORFER M,EGHBAL-ZADEH H,et al. Featurecombination hybrid recommender systems for automated music playlist continuation[J]. User Modeling and User-Adapted Interaction,2019,29(2):527-572. [12] WANG H,WANG N,YEUNG D Y. Collaborative deep learning for recommender systems[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2015:1235-1244. [13] YUAN L,LIU J,YE J. Efficient methods for overlapping group lasso[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2011:352-360. [14] PARIKH N,BOYD S. Proximal algorithms[J]. Foundations and Trends in Optimization,2014,1(3):123-231. [15] LI H, LIN Z. Accelerated proximal gradient methods for nonconvex programming[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:379-387. [16] YUAN L,LIU J,YE J,et al. Efficient methods for overlapping group Lasso[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(9):2104-2116. |