Journal of Computer Applications ›› 2017, Vol. 37 ›› Issue (5): 1481-1484.DOI: 10.11772/j.issn.1001-9081.2017.05.1481

Previous Articles     Next Articles

Improved dark channel prior dehazing algorithm combined with atmospheric light and transmission

CHEN Gaoke, YANG Yan, ZHANG Baoshan   

  1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou Gansu 730070, China
  • Received:2016-10-08 Revised:2017-01-01 Online:2017-05-10 Published:2017-05-16
  • Supported by:
    This work is partially supported by National Natural Science Foundation of China (61561030), the Scientfic Research Found of Gansu Financial Committee (214138), the Teaching Reform Project of Lanzhou Jiaotong University (160012).

结合透射率和大气光改进的暗原色先验去雾算法

陈高科, 杨燕, 张宝山   

  1. 兰州交通大学 电子与信息工程学院, 兰州 730070
  • 通讯作者: 杨燕
  • 作者简介:陈高科(1992-),男,甘肃平凉人,硕士研究生,主要研究方向:数字图像处理;杨燕(1972-),女,河南临颍人,教授,博士,主要研究方向:数字图像处理、智能信息处理、语音信号处理;张宝山(1989-),男(回),山东青州人,硕士研究生,主要研究方向:数字图像处理。
  • 基金资助:
    国家自然科学基金资助项目(61561030);甘肃省财政厅基本科研业务费资助项目(214138);兰州交通大学教改项目(160012)。

Abstract: Since the dark channel prior transmission and atmospheric light in the bright region are poorly estimated, an improved dehazing algorithm combined with atmospheric light and transmission was proposed. On the basis of analysis of the characteristics of Gaussian function, a preliminary transmission was estimated through the Gaussian function of dark channel prior of a fog image, and the maximum and minimum operations were used to eliminate the block effect. Next, the atmospheric light was obtained by atmospheric light description area, which was acquired by halo operation and morphological dilation operation. Finally, a clear image could be reconstructed according to the atmospheric scattering model. The experimental results show that the proposed algorithm can effectively remove the fog from the image and the recovered effect of thick fog is better than the comparison algorithms, such as dark channel prior, meanwhile the algorithm has a faster processing speed and is suitable for real-time applications.

Key words: Gaussian function, atmospheric scattering model, dehazing, atmospheric light area, Dark Channel Prior (DCP)

摘要: 针对暗原色先验透射率在明亮区域估计不足以及大气光误差问题,提出一种结合透射率和大气光改进的去雾算法。在分析高斯函数特点的基础上,依据有雾图像暗原色的高斯函数初步估计透射率,利用最大最小操作消除块状效应;然后,通过晕光算子与形态学膨胀操作获取大气光描述区域来获取大气光值;最后根据大气散射模型复原清晰图像。实验结果表明,所提算法能够有效去除图像中的雾气,浓雾图像恢复效果相比暗原色先验等算法更佳,且处理速度较快,便于实时应用。

关键词: 高斯函数, 大气散射模型, 去雾, 大气光区, 暗原色先验

CLC Number: