Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (9): 2800-2806.DOI: 10.11772/j.issn.1001-9081.2021071216
• Advanced computing • Previous Articles Next Articles
Yuhang WANG(), Yongxia ZHOU, Liangwu WU
Received:
2021-07-13
Revised:
2021-09-21
Accepted:
2021-09-24
Online:
2021-10-18
Published:
2022-09-10
Contact:
Yuhang WANG
About author:
ZHOU Yongxia, born in 1975, Ph. D., associate professor. His research interests include computer image and video processing, machine vision, artificial intelligence.Supported by:
通讯作者:
王宇航
作者简介:
周永霞(1975—),男,浙江诸暨人,副教授,博士,主要研究方向:计算机图像视频处理、机器视觉、人工智能;基金资助:
CLC Number:
Yuhang WANG, Yongxia ZHOU, Liangwu WU. Pooling algorithm based on Gaussian function[J]. Journal of Computer Applications, 2022, 42(9): 2800-2806.
王宇航, 周永霞, 吴良武. 基于高斯函数的池化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2800-2806.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071216
输入尺寸 | 操作 | 激活函数 | 步长 |
---|---|---|---|
224×224×3 | Conv2d,3×3 | h-swish | 2 |
112×112×16 | Bneck,3×3 | ReLU | 2 |
56×56×16 | Bneck,3×3 | ReLU | 2 |
28×28×24 | Bneck,3×3 | ReLU | 1 |
28×28×24 | Bneck,5×5 | h-swish | 2 |
14×14×40 | Bneck,5×5 | h-swish | 1 |
14×14×40 | Bneck,5×5 | h-swish | 1 |
14×14×40 | Bneck,5×5 | h-swish | 1 |
14×14×48 | Bneck,5×5 | h-swish | 1 |
14×14×48 | Bneck,5×5 | h-swish | 2 |
7×7×96 | Bneck,5×5 | h-swish | 1 |
7×7×96 | Conv2d,1×1 | h-swish | 1 |
7×7×576 | Pool,7×7 | — | 1 |
1×1×576 | Conv2d 1×1 | h-swish | 1 |
1×1×1 024 | Conv2d 1×1 | — | 1 |
Tab.1 Structure of MobileNet v3 Small model
输入尺寸 | 操作 | 激活函数 | 步长 |
---|---|---|---|
224×224×3 | Conv2d,3×3 | h-swish | 2 |
112×112×16 | Bneck,3×3 | ReLU | 2 |
56×56×16 | Bneck,3×3 | ReLU | 2 |
28×28×24 | Bneck,3×3 | ReLU | 1 |
28×28×24 | Bneck,5×5 | h-swish | 2 |
14×14×40 | Bneck,5×5 | h-swish | 1 |
14×14×40 | Bneck,5×5 | h-swish | 1 |
14×14×40 | Bneck,5×5 | h-swish | 1 |
14×14×48 | Bneck,5×5 | h-swish | 1 |
14×14×48 | Bneck,5×5 | h-swish | 2 |
7×7×96 | Bneck,5×5 | h-swish | 1 |
7×7×96 | Conv2d,1×1 | h-swish | 1 |
7×7×576 | Pool,7×7 | — | 1 |
1×1×576 | Conv2d 1×1 | h-swish | 1 |
1×1×1 024 | Conv2d 1×1 | — | 1 |
实验模型 | Epoch | ||
---|---|---|---|
20 | 40 | 60 | |
LeNet5-最大池化 | 55.030 | 56.160 | 57.020 |
LeNet5-平均池化 | 50.160 | 53.010 | 54.790 |
LeNet5-随机池化 | 53.030 | 57.280 | 58.910 |
LeNet5-混合池化 | 54.860 | 57.900 | 61.810 |
LeNet5-模糊池化 | 55.790 | 59.010 | 62.390 |
LeNet5-融合随机池化 | 56.420 | 60.720 | 63.750 |
LeNet5-soft池化 | 57.920 | 61.750 | 64.960 |
LeNet5-本文算法 | 59.370 | 62.780 | 65.480 |
VGG16-最大池化 | 79.090 | 82.840 | 83.810 |
VGG16-平均池化 | 75.730 | 81.080 | 82.630 |
VGG16-随机池化 | 77.720 | 84.390 | 84.610 |
VGG16-混合池化 | 78.620 | 82.970 | 83.880 |
VGG16-模糊池化 | 79.860 | 83.910 | 84.860 |
VGG16-融合随机池化 | 80.040 | 84.100 | 84.570 |
VGG16-soft池化 | 81.850 | 84.160 | 84.850 |
VGG16-本文算法 | 82.760 | 84.650 | 85.610 |
ResNet18-最大池化 | 81.820 | 85.740 | 86.830 |
ResNet18-平均池化 | 82.540 | 86.400 | 87.420 |
ResNet18-随机池化 | 83.040 | 86.900 | 88.110 |
ResNet18-混合池化 | 82.940 | 86.630 | 87.870 |
ResNet18-模糊池化 | 82.180 | 85.970 | 88.170 |
ResNet18-融合随机池化 | 82.970 | 86.540 | 88.350 |
ResNet18-soft池化 | 83.090 | 87.650 | 89.200 |
ResNet18-本文算法 | 83.930 | 87.940 | 89.930 |
MobileNet-最大池化 | 77.040 | 80.890 | 82.750 |
MobileNet-平均池化 | 76.880 | 80.670 | 82.890 |
MobileNet-随机池化 | 78.940 | 82.270 | 84.000 |
MobileNet-混合池化 | 78.210 | 82.390 | 83.680 |
MobileNet-模糊池化 | 77.990 | 81.530 | 83.520 |
MobileNet-融合随机池化 | 79.010 | 82.470 | 84.140 |
MobileNet-soft池化 | 78.980 | 82.330 | 84.170 |
MobileNet-本文算法 | 79.100 | 82.990 | 84.720 |
Tab.2 Top-1 index of each model on CIFAR-10 dataset
实验模型 | Epoch | ||
---|---|---|---|
20 | 40 | 60 | |
LeNet5-最大池化 | 55.030 | 56.160 | 57.020 |
LeNet5-平均池化 | 50.160 | 53.010 | 54.790 |
LeNet5-随机池化 | 53.030 | 57.280 | 58.910 |
LeNet5-混合池化 | 54.860 | 57.900 | 61.810 |
LeNet5-模糊池化 | 55.790 | 59.010 | 62.390 |
LeNet5-融合随机池化 | 56.420 | 60.720 | 63.750 |
LeNet5-soft池化 | 57.920 | 61.750 | 64.960 |
LeNet5-本文算法 | 59.370 | 62.780 | 65.480 |
VGG16-最大池化 | 79.090 | 82.840 | 83.810 |
VGG16-平均池化 | 75.730 | 81.080 | 82.630 |
VGG16-随机池化 | 77.720 | 84.390 | 84.610 |
VGG16-混合池化 | 78.620 | 82.970 | 83.880 |
VGG16-模糊池化 | 79.860 | 83.910 | 84.860 |
VGG16-融合随机池化 | 80.040 | 84.100 | 84.570 |
VGG16-soft池化 | 81.850 | 84.160 | 84.850 |
VGG16-本文算法 | 82.760 | 84.650 | 85.610 |
ResNet18-最大池化 | 81.820 | 85.740 | 86.830 |
ResNet18-平均池化 | 82.540 | 86.400 | 87.420 |
ResNet18-随机池化 | 83.040 | 86.900 | 88.110 |
ResNet18-混合池化 | 82.940 | 86.630 | 87.870 |
ResNet18-模糊池化 | 82.180 | 85.970 | 88.170 |
ResNet18-融合随机池化 | 82.970 | 86.540 | 88.350 |
ResNet18-soft池化 | 83.090 | 87.650 | 89.200 |
ResNet18-本文算法 | 83.930 | 87.940 | 89.930 |
MobileNet-最大池化 | 77.040 | 80.890 | 82.750 |
MobileNet-平均池化 | 76.880 | 80.670 | 82.890 |
MobileNet-随机池化 | 78.940 | 82.270 | 84.000 |
MobileNet-混合池化 | 78.210 | 82.390 | 83.680 |
MobileNet-模糊池化 | 77.990 | 81.530 | 83.520 |
MobileNet-融合随机池化 | 79.010 | 82.470 | 84.140 |
MobileNet-soft池化 | 78.980 | 82.330 | 84.170 |
MobileNet-本文算法 | 79.100 | 82.990 | 84.720 |
实验模型 | Epoch | ||
---|---|---|---|
10 | 20 | 30 | |
LeNet5-最大池化 | 44.581 | 46.893 | 48.119 |
LeNet5-平均池化 | 43.299 | 44.887 | 47.033 |
LeNet5-随机池化 | 43.689 | 46.308 | 49.206 |
LeNet5-混合池化 | 45.302 | 48.590 | 48.760 |
LeNet5-模糊池化 | 47.181 | 48.760 | 51.156 |
LeNet5-融合随机池化 | 47.334 | 49.955 | 52.082 |
LeNet5-soft池化 | 48.878 | 50.165 | 52.674 |
LeNet5-本文算法 | 49.596 | 50.961 | 53.385 |
VGG16-最大池化 | 49.847 | 55.503 | 57.816 |
VGG16-平均池化 | 50.822 | 57.453 | 58.596 |
VGG16-随机池化 | 46.197 | 55.113 | 61.048 |
VGG16-混合池化 | 48.531 | 56.450 | 59.571 |
VGG16-模糊池化 | 51.420 | 57.156 | 60.960 |
VGG16-融合随机池化 | 52.147 | 57.098 | 61.082 |
VGG16-soft池化 | 53.461 | 57.385 | 61.904 |
VGG16-本文算法 | 53.803 | 58.011 | 62.435 |
ResNet18-最大池化 | 50.334 | 55.974 | 60.978 |
ResNet18-平均池化 | 50.348 | 56.293 | 60.841 |
ResNet18-随机池化 | 50.485 | 56.590 | 61.624 |
ResNet18-混合池化 | 51.240 | 56.961 | 62.544 |
ResNet18-模糊池化 | 51.026 | 57.476 | 63.098 |
ResNet18-融合随机池化 | 50.702 | 57.998 | 63.345 |
ResNet18-soft池化 | 51.395 | 58.132 | 64.333 |
ResNet18-本文算法 | 52.187 | 59.457 | 65.676 |
MobileNet-最大池化 | 50.485 | 54.755 | 58.080 |
MobileNet-平均池化 | 50.181 | 54.659 | 57.863 |
MobileNet-随机池化 | 51.006 | 54.802 | 58.240 |
MobileNet-混合池化 | 50.702 | 55.076 | 58.302 |
MobileNet-模糊池化 | 50.847 | 55.916 | 58.647 |
MobileNet-融合随机池化 | 51.017 | 55.715 | 58.461 |
MobileNet-soft池化 | 51.096 | 55.637 | 58.996 |
MobileNet-本文算法 | 51.028 | 56.450 | 59.739 |
Tab.3 Top-1 index of each model on Fer2013 dataset
实验模型 | Epoch | ||
---|---|---|---|
10 | 20 | 30 | |
LeNet5-最大池化 | 44.581 | 46.893 | 48.119 |
LeNet5-平均池化 | 43.299 | 44.887 | 47.033 |
LeNet5-随机池化 | 43.689 | 46.308 | 49.206 |
LeNet5-混合池化 | 45.302 | 48.590 | 48.760 |
LeNet5-模糊池化 | 47.181 | 48.760 | 51.156 |
LeNet5-融合随机池化 | 47.334 | 49.955 | 52.082 |
LeNet5-soft池化 | 48.878 | 50.165 | 52.674 |
LeNet5-本文算法 | 49.596 | 50.961 | 53.385 |
VGG16-最大池化 | 49.847 | 55.503 | 57.816 |
VGG16-平均池化 | 50.822 | 57.453 | 58.596 |
VGG16-随机池化 | 46.197 | 55.113 | 61.048 |
VGG16-混合池化 | 48.531 | 56.450 | 59.571 |
VGG16-模糊池化 | 51.420 | 57.156 | 60.960 |
VGG16-融合随机池化 | 52.147 | 57.098 | 61.082 |
VGG16-soft池化 | 53.461 | 57.385 | 61.904 |
VGG16-本文算法 | 53.803 | 58.011 | 62.435 |
ResNet18-最大池化 | 50.334 | 55.974 | 60.978 |
ResNet18-平均池化 | 50.348 | 56.293 | 60.841 |
ResNet18-随机池化 | 50.485 | 56.590 | 61.624 |
ResNet18-混合池化 | 51.240 | 56.961 | 62.544 |
ResNet18-模糊池化 | 51.026 | 57.476 | 63.098 |
ResNet18-融合随机池化 | 50.702 | 57.998 | 63.345 |
ResNet18-soft池化 | 51.395 | 58.132 | 64.333 |
ResNet18-本文算法 | 52.187 | 59.457 | 65.676 |
MobileNet-最大池化 | 50.485 | 54.755 | 58.080 |
MobileNet-平均池化 | 50.181 | 54.659 | 57.863 |
MobileNet-随机池化 | 51.006 | 54.802 | 58.240 |
MobileNet-混合池化 | 50.702 | 55.076 | 58.302 |
MobileNet-模糊池化 | 50.847 | 55.916 | 58.647 |
MobileNet-融合随机池化 | 51.017 | 55.715 | 58.461 |
MobileNet-soft池化 | 51.096 | 55.637 | 58.996 |
MobileNet-本文算法 | 51.028 | 56.450 | 59.739 |
实验模型 | Epoch | ||
---|---|---|---|
5 | 10 | 15 | |
LeNet5-最大池化 | 45.891 | 67.675 | 82.668 |
LeNet5-平均池化 | 45.142 | 68.324 | 82.443 |
LeNet5-随机池化 | 46.151 | 68.890 | 83.905 |
LeNet5-混合池化 | 45.801 | 67.712 | 83.494 |
LeNet5-模糊池化 | 46.246 | 68.567 | 84.099 |
LeNet5-融合随机池化 | 45.980 | 68.759 | 84.560 |
LeNet5-soft池化 | 46.721 | 69.000 | 84.318 |
LeNet5-本文算法 | 47.130 | 69.450 | 85.074 |
VGG16-最大池化 | 53.692 | 70.246 | 89.397 |
VGG16-平均池化 | 54.026 | 70.856 | 88.180 |
VGG16-随机池化 | 53.280 | 69.960 | 90.269 |
VGG16-混合池化 | 54.678 | 70.210 | 89.517 |
VGG16-模糊池化 | 54.024 | 71.538 | 90.837 |
VGG16-融合随机池化 | 55.099 | 72.986 | 90.920 |
VGG16-soft池化 | 54.689 | 73.223 | 91.205 |
VGG16-本文算法 | 55.568 | 74.642 | 92.167 |
ResNet18-最大池化 | 70.801 | 87.769 | 96.837 |
ResNet18-平均池化 | 71.220 | 87.387 | 97.100 |
ResNet18-随机池化 | 72.413 | 89.657 | 97.375 |
ResNet18-混合池化 | 71.070 | 88.165 | 96.998 |
ResNet18-模糊池化 | 72.142 | 90.120 | 97.554 |
ResNet18-融合随机池化 | 72.814 | 90.105 | 97.445 |
ResNet18-soft池化 | 72.909 | 91.025 | 97.869 |
ResNet18-本文算法 | 74.678 | 91.920 | 98.708 |
MobileNet-最大池化 | 64.142 | 84.249 | 94.070 |
MobileNet-平均池化 | 64.494 | 84.129 | 93.756 |
MobileNet-随机池化 | 65.046 | 85.078 | 94.801 |
MobileNet-混合池化 | 64.000 | 84.935 | 94.130 |
MobileNet-模糊池化 | 63.958 | 85.140 | 94.814 |
MobileNet-融合随机池化 | 65.176 | 85.394 | 94.732 |
MobileNet-soft池化 | 65.169 | 85.373 | 94.810 |
MobileNet-本文算法 | 65.373 | 85.589 | 95.336 |
Tab.4 Top-1 index of each model on GTSRB dataset
实验模型 | Epoch | ||
---|---|---|---|
5 | 10 | 15 | |
LeNet5-最大池化 | 45.891 | 67.675 | 82.668 |
LeNet5-平均池化 | 45.142 | 68.324 | 82.443 |
LeNet5-随机池化 | 46.151 | 68.890 | 83.905 |
LeNet5-混合池化 | 45.801 | 67.712 | 83.494 |
LeNet5-模糊池化 | 46.246 | 68.567 | 84.099 |
LeNet5-融合随机池化 | 45.980 | 68.759 | 84.560 |
LeNet5-soft池化 | 46.721 | 69.000 | 84.318 |
LeNet5-本文算法 | 47.130 | 69.450 | 85.074 |
VGG16-最大池化 | 53.692 | 70.246 | 89.397 |
VGG16-平均池化 | 54.026 | 70.856 | 88.180 |
VGG16-随机池化 | 53.280 | 69.960 | 90.269 |
VGG16-混合池化 | 54.678 | 70.210 | 89.517 |
VGG16-模糊池化 | 54.024 | 71.538 | 90.837 |
VGG16-融合随机池化 | 55.099 | 72.986 | 90.920 |
VGG16-soft池化 | 54.689 | 73.223 | 91.205 |
VGG16-本文算法 | 55.568 | 74.642 | 92.167 |
ResNet18-最大池化 | 70.801 | 87.769 | 96.837 |
ResNet18-平均池化 | 71.220 | 87.387 | 97.100 |
ResNet18-随机池化 | 72.413 | 89.657 | 97.375 |
ResNet18-混合池化 | 71.070 | 88.165 | 96.998 |
ResNet18-模糊池化 | 72.142 | 90.120 | 97.554 |
ResNet18-融合随机池化 | 72.814 | 90.105 | 97.445 |
ResNet18-soft池化 | 72.909 | 91.025 | 97.869 |
ResNet18-本文算法 | 74.678 | 91.920 | 98.708 |
MobileNet-最大池化 | 64.142 | 84.249 | 94.070 |
MobileNet-平均池化 | 64.494 | 84.129 | 93.756 |
MobileNet-随机池化 | 65.046 | 85.078 | 94.801 |
MobileNet-混合池化 | 64.000 | 84.935 | 94.130 |
MobileNet-模糊池化 | 63.958 | 85.140 | 94.814 |
MobileNet-融合随机池化 | 65.176 | 85.394 | 94.732 |
MobileNet-soft池化 | 65.169 | 85.373 | 94.810 |
MobileNet-本文算法 | 65.373 | 85.589 | 95.336 |
池化算法 | 分辨率 | ||
---|---|---|---|
100×100 | 1 000×1 000 | 10 000×10 000 | |
最大池化 | 0.093 | 4.675 | 307.083 |
平均池化 | 0.252 | 9.025 | 867.590 |
随机池化 | 0.444 | 12.446 | 1 268.931 |
混合池化 | 0.196 | 8.988 | 831.617 |
模糊池化 | 0.689 | 16.031 | 1 812.159 |
融合随机池化 | 0.631 | 15.296 | 1 604.357 |
soft池化 | 0.454 | 13.155 | 1 239.741 |
本文算法 | 0.372 | 11.387 | 1036.137 |
Tab.5 Running time of each algorithm under different image resolution
池化算法 | 分辨率 | ||
---|---|---|---|
100×100 | 1 000×1 000 | 10 000×10 000 | |
最大池化 | 0.093 | 4.675 | 307.083 |
平均池化 | 0.252 | 9.025 | 867.590 |
随机池化 | 0.444 | 12.446 | 1 268.931 |
混合池化 | 0.196 | 8.988 | 831.617 |
模糊池化 | 0.689 | 16.031 | 1 812.159 |
融合随机池化 | 0.631 | 15.296 | 1 604.357 |
soft池化 | 0.454 | 13.155 | 1 239.741 |
本文算法 | 0.372 | 11.387 | 1036.137 |
1 | HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. 10.1126/science.1127647 |
2 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105. |
3 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-08-16].. |
4 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
5 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. 10.1109/cvpr.2015.7298594 |
6 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
7 | LEE C Y, GALLAGHER P, TU Z W. Generalizing pooling functions in CNNs: mixed, gated, and tree[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):863-875. 10.1109/tpami.2017.2703082 |
8 | ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks[EB/OL]. (2013-01-16) [2021-08-16]. . |
9 | YU D J, WANG H L, CHEN P Q, et al. Mixed pooling for convolutional neural networks[C]// Proceedings of the 2014 International Conference on Rough Sets and Knowledge Technology, LNCS 8818. Cham: Springer, 2014: 364-375. |
10 | GONG Y C, WANG L W, GUO R Q, et al. Multi-scale orderless pooling of deep convolutional activation features[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8695. Cham: Springer, 2014: 392-407. |
11 | SHARMA T, SINGH V, SUDHAKARAN S, et al. Fuzzy based pooling in convolutional neural network for image classification[C]// Proceedings of the 2019 IEEE International Conference on Fuzzy Systems. Piscataway: IEEE, 2019: 1-6. 10.1109/fuzz-ieee.2019.8859010 |
12 | REYES I V P D, SISON A M, MEDINA R P. A novel fused random pooling method for convolutional neural network to improve image classification accuracy[C]// Proceedings of the IEEE 6th International Conference on Engineering Technologies and Applied Sciences. Piscataway: IEEE, 2019: 1-5. 10.1109/icetas48360.2019.9117323 |
13 | WAN W T, CHEN J S, LI T P, et al. Information entropy based feature pooling for convolutional neural networks[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3404-3413. 10.1109/iccv.2019.00350 |
14 | STERGIOU A, POPPE R, KALLIATAKIS G. Refining activation downsampling with softpool[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10337-10346. 10.1109/iccv48922.2021.01019 |
15 | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. 10.1109/5.726791 |
16 | ABOUELNAGA Y, ALI O S, RADY H, et al. CIFAR-10: KNN-based ensemble of classifiers[C]// Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence. Piscataway: IEEE, 2016: 1192-1195. 10.1109/csci.2016.0225 |
17 | GOODFELLOW I J, ERHAN D, LUC CARRIER P, et al. Challenges in representation learning: a report on three machine learning contests[J]. Neural Networks, 2015, 64:59-63. 10.1016/j.neunet.2014.09.005 |
18 | 韩习习,魏民,徐西义,等. 基于多特征融合的交通标志识别算法[J]. 计算机工程与应用, 2019, 55(18):195-200. |
HAN X X, WEI M, XU X Y, et al. Traffic sign recognition algorithm based on multi-feature fusion[J]. Computer Engineering and Applications, 2019, 55(18):195-200. |
[1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[2] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[3] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[4] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[5] | Qianhui LU, Yu ZHANG, Mengling WANG, Tingwei WU, Yuzhong SHAN. Classification model of nuclear power equipment quality text based on improved recurrent pooling network [J]. Journal of Computer Applications, 2024, 44(7): 2034-2040. |
[6] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[7] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[8] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[9] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. |
[10] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[11] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[12] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. |
[13] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. |
[14] | Jingxian ZHOU, Xina LI. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint [J]. Journal of Computer Applications, 2024, 44(3): 876-882. |
[15] | Ruifeng HOU, Pengcheng ZHANG, Liyuan ZHANG, Zhiguo GUI, Yi LIU, Haowen ZHANG, Shubin WANG. Iterative denoising network based on total variation regular term expansion [J]. Journal of Computer Applications, 2024, 44(3): 916-921. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||