[1] HE K,SUN J,TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353. [2] MCCARTNEY E J,HALL F F. Optics of the atmosphere:scattering by molecules and particles[J]. Physics Today,1977,30(5):76-77. [3] PEI S C,LEE T Y. Nighttime haze removal using color transfer preprocessing and dark channel prior[C]//Proceedings of the 19th IEEE International Conference on Image Processing. Piscataway:IEEE,2012:957-960. [4] REINHARD E,ADHIKHMIN M,GOOCH B,et al. Color transfer between images[J]. IEEE Computer Graphics and Applications, 2001,21(5):34-41. [5] ZHANG J,CAO Y,WANG Z. Nighttime haze removal based on a new imaging model[C]//Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway:IEEE,2014:4557-4561. [6] LI Y,TAN R T,BROWN M S. Nighttime haze removal with glow and multiple light colors[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:226-234. [7] LI Y,BROWN M S. Single image layer separation using relative smoothness[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:2752-2759. [8] ANCUTI C O,ANCUTI C,DE VLEESCHOUWER C. Effective local airlight estimation for image dehazing[C]//Proceedings of the 25th IEEE International Conference on Image Processing. Piscataway:IEEE,2018:2850-2854. [9] YANG M,LIU J,LI Z. Superpixel-based single nighttime image haze removal[J]. IEEE Transactions on Multimedia,2018,20(11):3008-3018. [10] ANCUTI C,ANCUTI C O,DE VLEESCHOUWER C,et al. Night-time dehazing by fusion[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway:IEEE, 2016:2256-2260. [11] ZHANG J,CAO Y,FANG S,et al. Fast haze removal for nighttime image using maximum reflectance prior[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:7016-7024. [12] PARK D,HAN D K,KO H. Nighttime image dehazing with local atmospheric light and weighted entropy[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway:IEEE,2016:2261-2265. [13] 方帅, 赵育坤, 李心科, 等. 基于光照估计的夜间图像去雾[J]. 电子学报,2016,44(11):2569-2575.(FANG S,ZHAO Y K,LI X K,et al. Nighttime haze removal based on illumination estimation[J]. Acta Electronica Sinica,2016,44(11):2569-2575.) [14] 杨爱萍, 王南. 基于结构-纹理分层的夜间图像去雾算法[J]. 激光与光电子学进展,2018,55(6):95-102. (YANG A P, WANG N. Nighttime image dehazing algorithm by structure-texture image decomposition[J]. Laser and Optoelectronics Progress, 2018,55(6):95-102.) [15] LIAO Y,SU Z,LIANG X,et al. HDP-Net:haze density prediction network for nighttime dehazing[C]//Proceedings of the 2018 Pacific Rim Conference on Multimedia,LNCS 11164. Cham:Springer,2018:469-480. [16] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge,MA:MIT Press,2014:2672-2680. [17] MIRZA M,OSINDERO S. Conditional generative adversarial nets[EB/OL].[2019-03-22]. https://arxiv.org/pdf/1411.1784.pdf. [18] JOHNSON J,ALAHI A,LI F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9906. Cham:Springer, 2016:694-711. [19] ISOLA P,ZHU J,ZHOU T,et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5967-5976. [20] ZHANG H,SINDAGI V,PATELV M. Image de-raining using a conditional generative adversarial network[EB/OL].[2019-03-22]. https://arxiv.org/pdf/1701.05957.pdf. [21] SWAMI K,DAS S K. Candy:conditional adversarial networks based fully end-to-end system for single image haze removal[EB/OL].[2019-03-22]. https://arxiv.org/ftp/arxiv/papers/1801/1801.02892.pdf. [22] LI R,PAN J,LI Z,et al. Single image dehazing via conditional generative adversarial network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:8202-8211. [23] BHARATH R N,VENKATESWARAN N. Single image haze removal using a generative adversarial network[EB/OL].[2019-03-22]. https://arxiv.org/ftp/arxiv/papers/1810/1810.09479.pdf. [24] JOO D,KIM D,KIM J. Generating a fusion image:one's identity and another's shape[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:1635-1643. [25] RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 9351. Cham:Springer,2015:234-241. [26] DI X,SINDAGI V A,PATEL V M. GP-GAN:Gender preserving GAN for synthesizing faces from landmarks[C]//Proceedings of the 24th International Conference on Pattern Recognition. Piscataway:IEEE,2018:1079-1084. [27] HUANG G,LIU Z,VAN DER MAATEN L,et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2261-2269. [28] SALIMANS T,GOODFELLOW I,ZAREMBA W,et al. Improved techniques for training GANs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York:Curran Associates Inc.,2016:2234-2242. [29] LIN D,FU K,WANG Y,et al. MARTA GANs:Unsupervised representation learning for remote sensing image classification[J]. IEEE Geoscience and Remote Sensing Letters,2017,14(11):2092-2096. [30] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-03-22]. https://arxiv.org/pdf/1409.1556.pdf. |