[1] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5):341-356. [2] HU Q H, CHE X J, ZHANG L, et al. Rank entropy based decision trees for monotonic classification[J]. IEEE Transactions on Knowledge & Data Engineering, 2012, 24(11):2052-2064. [3] SRINIVASA K G, VENUGOPAL K R, PATNAIK L M. A soft computing approach for data mining based query processing using rough sets and genetic algorithms[J]. International Journal of Hybrid Intelligent Systems, 2008, 5(1):1-17. [4] 白鹤翔,王健,李德玉,等.基于粗糙集的非监督快速属性选择算法[J].计算机应用,2015,35(8):2355-2359.(BAI H X, WANG J, LI D Y, et al. Fast unsupervised feature selection algorithm based on rough set theory[J]. Journal of Computer Applications, 2015, 35(8):2355-2359.) [5] QIAN Y H, LIANG J Y, YAO Y Y, et al. MGRS:a multi-granulation rough set[J]. Information Sciences, 2010, 180(6):949-970. [6] XU W H, SUN W X, ZHANG X Y, et al. Multiple granulation rough set approach to ordered information systems[J]. International Journal of General Systems, 2012, 41(5):475-501. [7] YANG X B, SONG X N, DOU H L, et al. Multi-granulation rough set:from crisp to fuzzy case[J]. Annals of Fuzzy Mathematics and Informatics, 2011, 1(1):55-70. [8] LIN G P, QIAN Y H, LI J J. NMGRS:Neighborhood-based multigranulation rough sets[J]. International Journal of Approximate Reasoning, 2012, 53(7):1080-1093. [9] QIAN Y H, ZHANG H, SANG Y L, et al. Multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning, 2014, 55(1):225-237. [10] 张明,唐振民,徐维艳,等.可变多粒度粗糙集模型[J].模式识别与人工智能,2012,25(4):709-720.(ZHANG M, TANG Z M, XU W Y, et al. Variable multigranulation rough set model[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(4):709-720.) [11] 桑妍丽,钱宇华.一种悲观多粒度粗糙集中的粒度约简算法[J].模式识别与人工智能,2012,25(3):361-366.(SANG Y L, QIAN Y H. A granular space reduction approach to pessimistic multi-granulation rough sets[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(3):361-366.) [12] YANG X B, QI Y S, SONG X N, et al. Test cost sensitive multigranulation rough set:model and minimal cost selection[J]. Information Sciences, 2013, 250(11):184-199. [13] 张明,程科,杨习贝,等.基于加权粒度的多粒度粗糙集[J].控制与决策,2015,30(2):222-228.(ZHANG M, CHENG K, YANG X B, et al. Multigranulation rough set based on weighted granulations[J]. Control and Decision, 2015, 30(2):222-228.) [14] DAI J H, WANG W T, TIAN H W, et al. Attribute selection based on a new conditional entropy for incomplete decision systems[J]. Knowledge-Based Systems, 2013, 39(2):207-213. [15] MIAO D Q, GAO C, ZHANG N, et al. Diverse reduct subspaces based co-training for partially labeled data[J]. International Journal of Approximate Reasoning, 2011, 52(8):1103-1117. [16] QIAN J, MIAO D Q, ZHANG Z H, et al. Hybrid approaches to attribute reduction based on indiscernibility and discernibility relation[J]. International Journal of Approximate Reasoning, 2011, 52(2):212-230. [17] 鞠恒荣,周献中,杨佩,等.测试代价敏感的粗糙集方法[J].系统工程理论与实践,2017,37(1):228-240.(JU H R, ZHOU X Z, YANG P, et al. Test-cost-sensitive based rough set approach[J]. System Engineering-Theory and Practice, 2017, 37(1):228-240.) [18] YANG X B, QI Y, YU H L, et al. Updating multigranulation rough approximations with increasing of granular structures[J]. Knowledge-Based Systems, 2014, 64(1):59-69. |