Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (11): 3140-3145.DOI: 10.11772/j.issn.1001-9081.2019050836

• The 2019 China Conference on Granular Computing and Knowledge Discovery (CGCKD2019) • Previous Articles     Next Articles

Matrix-based algorithm for updating approximations in variable precision multi-granulation rough sets

ZHENG Wenbin1,2, LI Jinjin3, YU Peiqiu3, LIN Yidong4   

  1. 1. School of Computer Science, Minnan Normal University, Zhangzhou Fujian 363000, China;
    2. Fujian Key Laboratory of Granular Computing and Its Important Applications(Minnan Normal University), Zhangzhou Fujian 363000, China;
    3. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou Fujian 363000, China;
    4. School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005, China
  • Received:2019-05-06 Revised:2019-06-05 Online:2019-11-10 Published:2019-09-11
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (11871259, 61379021), the Youth Fund of Natural Science Foundation of China (11701258).

变精度多粒度粗糙集近似集更新的矩阵算法

郑文彬1,2, 李进金3, 于佩秋3, 林艺东4   

  1. 1. 闽南师范大学 计算机学院, 福建 漳州 363000;
    2. 福建省粒计算及其应用重点实验室(闽南师范大学), 福建 漳州 363000;
    3. 闽南师范大学 数学与统计学院, 福建 漳州 363000;
    4. 厦门大学 数学科学学院, 福建 厦门 361005
  • 通讯作者: 郑文彬
  • 作者简介:郑文彬(1971-),男,福建仙游人,高级讲师,硕士,主要研究方向:粗糙集、粒计算、数据挖掘、人工智能;李进金(1960-),男,福建晋江人,教授,博士,主要研究方向:人工智能、粒计算、拓扑学;于佩秋(1991-),男,内蒙古赤峰人,硕士研究生,主要研究方向:粗糙集、粒计算、数据挖掘、人工智能;林艺东(1989-),男,福建漳州人,博士研究生,主要研究方向:不确定性理论。
  • 基金资助:
    国家自然科学基金资助项目(11871259,61379021);国家自然科学基金青年项目(11701258)。

Abstract: In an information explosion era, the large scale and structure complexity of datasets become problems in approximation calculation. Dynamic computing is an efficient approach to solve these problems. With the development of existing updating method applied to the dynamic approximation in multi-granular rough sets, a vector matrix based method for computing and updating approximations in Variable Precision Multi-Granulation Rough Sets (VPMGRS) was proposed. Firstly, a static algorithm for computing approximations based on vector matrix for VPMGRS was presented. Secondly, the searching area for updating approximations in VPMGRS was reconsidered, and the area was shrunk according to the properties of VPMGRS, effectively improving the time efficiency of the approximation updating algorithm. Thirdly, according to the new searching area, a vector matrix based algorithm for updating approximations in VPMGRS was proposed based on the static algorithm for computing approximations. Finally, the effectiveness of the designed algorithm was verified by experiments.

Key words: dynamic computing, approximation updating, variable precision multi-granulation rough set, matrix algorithm

摘要: 随着信息大爆炸时代的到来,数据集的巨大化和数据集结构的复杂化已经成为近似计算中不能忽视的问题,而动态计算是解决这些问题的一种行之有效的途径。对现有的应用于经典多粒度粗糙集动态近似集更新方法进行了改进,提出了应用于变精度多粒度粗糙集(VPMGRS)的向量矩阵近似集计算与更新方法。首先,提出了一种基于向量矩阵的VPMGRS近似集静态计算算法;其次,重新考虑了VPMGRS近似集更新时的搜索区域,并根据VPMGRS的性质缩小了该区域,有效地提升了近似集更新算法的时间效率;再次,根据新的搜索区域,在VPMGRS近似集静态计算算法的基础上提出了一种新的VPMGRS近似集更新的向量矩阵算法;最后,通过实验验证了所提算法的有效性。

关键词: 动态计算, 近似集更新, 变精度多粒度粗糙集, 矩阵算法

CLC Number: