[1] LEE D T, SCHACHTER B J. Two algorithms for constructing Delaunay triangulations[J]. International Journal of Computer and Information Sciences, 1980, 9(3):219-242. [2] DWYER R A. A faster divide-and-conquer algorithm for constructing Delaunay triangulations[J]. Algorithmica, 1987, 2(1/2/3/4):137-151. [3] 高莉.改进的Deluanay三角剖分算法研究[D].兰州:兰州交通大学,2015:30-33.(GAO L. An improved Deluanay triangulation algorithm[D]. Lanzhou:Lanzhou Jiaotong University, 2015:30-33.) [4] CHEW L P. Constrained Delaunay triangulation[J]. Algorithmica, 1989, 4(1/2/3/4):97-108. [5] LEE D T, LIN A K. Generalized Delaunay triangulation for planar graphs[J]. Discrete & Computational Geometry, 1986, 1(3):201-217. [6] 张群会,解子毅.带断层约束的Delaunay三角剖分混合算法[J].西安科技大学学报,2014,34(1):52-56.(ZHANG Q H, XIE Z Y. Mixed algorithm of Delaunay triangular subdivision with fault constraint[J]. Journal of Xi'an University of Science and Technology, 2014, 34(1):52-56.) [7] RUPPERT J. A Delaunay refinement algorithm for quality 2-dimensional mesh generation[J]. Journal of Algorithms, 1995, 18(3):548-585. [8] SHEWCHUK J R. Delaunay refinement algorithms for triangular mesh generation[J]. Computational Geometry, 2002, 22(1/2/3):21-74. [9] BARBIC J, MILLER G. A quadratic running time example for ruppert's refinement algorithm[EB/OL].[2017-04-16]. http://www-bcf.usc.edu/~jbarbic/BarbicMiller-RupperQuadraticExampleTechReport.pdf. [10] RAND A. Where and how Chew's second Delaunay refinement algorithm works[C/OL]//Proceedings of the 201323rd Annual Canadian Conference on Computational Geometry,[2017-04-16]. http://www.w.cccg.ca/proceedings/2011/papers/paper91.pdf. [11] CAROLI M, DE CASTRO P M M, LORIOT S, et al. Robust and efficient Delaunay triangulations of points on or close to a sphere[C]//Proceedings of the 20109th International Conference on Experimental Algorithms. Berlin:Springer, 2010:462-473. [12] ZENG W, SHI R, GU X F. Global surface remeshing using symmetric Delaunay triangulation in uniformization spaces[C]//Proceedings of the 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering. Piscataway, NJ:IEEE, 2011:160-169. [13] GU X F, GUO R, LUO F, et al. A discrete uniformization theorem for polyhedral surfaces Ⅱ[EB/OL].[2017-04-16]. http://math.oregonstate.edu/~guoren/docs/u10-10.pdf. [14] GU X F, GUO R, LUO F, et al. A discrete uniformization theorem for polyhedral surfaces I[EB/OL].[2017-04-16]. https://arxiv.org/pdf/1401.4594.pdf. [15] PREPARATA F P, SHAMOS M I. Computational Geometry-an Introduction[M]. New York:Springer, 1985:241-276. |