[1] 蔡月红,朱倩, 孙萍, 等. 基于属性选择的半监督短文本分类算法[J]. 计算机应用, 2010, 30(4):1015-1018.(CAI Y H, ZHU Q, SUN P, et al. Semi supervised short text categorization based on attribute selection[J]. Journal of Computer Applications, 2010, 30(4):1015-1018.) [2] 修驰, 宋柔. 基于无监督学习的专业领域分词歧义消解方法[J]. 计算机应用, 2013, 33(3):780-783.(XIU C, SONG R. Disambiguation of domain word segmentation based on unsupervised learning[J]. Journal of Computer Applications, 2013, 33(3):780-783.) [3] 张永库, 李云峰, 孙劲光. 综合颜色和形状特征聚类的图像检索[J]. 计算机应用, 2014, 34(12):3549-3553.(ZHANG Y K, LI Y F, SUN J G. Image retrieval based on clustering according to color and shape features[J]. Journal of Computer Applications, 2014, 34(12):3549-3553.) [4] LI Z, HU D W, ZHOU Z T. Scene recognition combining structural and textural features[J]. Science China Information Sciences, 2013, 56(7):1-14. [5] ZHANG F, DU B, ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 53(4):2175-2184. [6] ZHU X, MA C, LIU B, et al. Target classification using SIFT sequence scale invariants[J]. Journal of Systems Engineering and Electronics, 2012, 23(5):633-639. [7] AKOGLU L, TONG H, KOUTRA D. Graph based anomaly detection and description:a survey[J]. Data Mining and Knowledge Discovery, 2015, 29(3):626-688. [8] 吴航, 刘保真, 苏卫华, 等. 视觉地形分类的词袋框架综述[J]. 中国图象图形报, 2016, 21(10):1276-1288.(WU H, LIU B Z, SU W H, et al. Bag of words for visual terrain classification:a comprehensive study[J]. Journal of Image and Graphics, 2016, 21(10):1276-1288.) [9] LI E, DU P, SAMAT A, et al. Mid-level feature representation via sparse autoencoder for remotely sensed scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 10(3):1068-1081. [10] SINGH A, PARMANAND, SAURABH. Survey on pLSA based scene classification techniques[C]//Proceedings of the 20145th International Conference on Confluence the Next Generation Information Technology Summit. Piscataway, NJ:IEEE, 2014:555-560. [11] ZHAO L J, TANG P, HUO L Z. Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 7(12):4620-4631. [12] 傅德胜, 周辰. 基于密度的改进K均值算法及实现[J]. 计算机应用, 2011, 31(2):432-434.(FU D S, ZHOU C. Improved K-means algorithm and its implementation based on density[J]. Journal of Computer Applications, 2011, 31(2):432-434.) [13] TURAGA S C, MURRAY J F, JAIN V, et al. Convolutional networks can learn to generate affinity graphs for image segmentation[J]. Neural Computation, 2010, 22(2):511-538. [14] PINTO N, DOUKHAN D, DICARLO J J, et al. A high-throughput screening approach to discovering good forms of biologically inspired visual representation[J]. PLoS Computational Biology, 2009, 5(11):e1000579. [15] PANG Y, SUN M, JIANG X, et al. Convolution in convolution for network in network[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, PP(99):1-11. [16] 王朔琛, 汪西莉. 参数自适应的半监督复合核支持向量机图像分类[J]. 计算机应用, 2015, 35(10):2974-2979.(WANG S C, WANG X L. Semi-supervised composite kernel support vector machine image classification with adaptive parameters[J]. Journal of Computer Applications, 2015, 35(10):2974-2979.) [17] 柴瑞敏, 曹振基. 基于改进的稀疏深度信念网络的人脸识别方法[J]. 计算机应用研究, 2015, 32(7):2179-2183.(CAI R M, CAO Z J. Face recognition algorithm based on improved sparse deep belief networks[J]. Application Research of Computers, 2015, 32(7):2179-2183.) [18] YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//GIS 2010:Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM, 2010:270-279. [19] LU F X, HUANG J. Beyond bag of latent topics:spatial pyramid matching for scene category recognition[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(10):817-829. [20] ZHANG F, DU B, ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 53(4):2175-2184. [21] 刘扬, 付征叶, 郑逢斌. 基于神经认知计算模型的高分辨率遥感图像场景分类[J]. 系统工程与电子技术, 2015, 37(11):2623-2633.(LIU Y, FU Z Y, ZHENG F B. Scene classification of high-resolution remote sensing image based on multimedia neural cognitive computing[J]. Systems Engineering and Electronics, 2015, 37(11):2623-2633.) [22] NOGUEIRA K, MIRANDA W O, SANTOS J A D. Improving spatial feature representation from aerial scenes by using convolutional networks[C]//Proceedings of the 201528th SIBGRAPI Conference on Graphics, Patterns and Images. Piscataway, NJ:IEEE, 2015:289-296. [23] LI E, DU P, SAMAT A, et al. Mid-level feature representation via sparse autoencoder for remotely sensed scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, PP(99):1-14. [24] 许夙晖, 慕晓冬, 赵鹏, 等. 利用多尺度特征与深度网络对遥感影像进行场景分类[J]. 测绘学报, 2016, 45(7):834-840.(XU S H, MU X D, ZHAO P, et al. Scene classification of remote sensing image based on multi-scale feature and deep neural network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):834-840.) |