[1] 苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8):1202-1213.(SU H, ZHOU J, ZHANG Z H. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8):1202-1213.) [2] CHANG H, YEUNG D-Y, XIONG Y. Super-resolution through neighbor embedding[C]//CVPR 2004:Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2004:275-282. [3] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[EB/OL].[2017-05-10]. http://eprints.imtlucca.it/2412/1/Bevilacqua_2012.pdf. [4] YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11):2861-2873. [5] SCHULTER S, LEISTNER C, BISCHOF H. Fast and accurate image upscaling with super-resolution forests[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:3791-3799. [6] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [7] WANG Z, LIU D, YANG J, et al. Deep networks for image super-resolution with sparse prior[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:370-378. [8] CUI Z, CHANG H, SHANG S, et al. Deep network cascade for image super-resolution[C]//ECCV 2014:Proceedings of the 13th European Conference on Computer Vision. Berlin:Springer, 2014:49-64. [9] NIE H, LU Y, IKRAM J. Face hallucination via convolution neural network[C]//Proceedings of the 2016 IEEE 28th International Conference on Tools with Artificial Intelligence. Piscataway, NJ:IEEE, 2017:485-489. [10] KIM C, CHOI K, RA J B. Improvement on learning-based super-resolution by adopting residual information and patch reliability[C]//Proceedings of the 200916th IEEE International Conference on Image Processing. Piscataway, NJ:IEEE, 2010:1197-1200. [11] TIMOFITE R, DE V, GOOL L V. Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2014:1920-1927. [12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2017-05-10]. https://arxiv.org/abs/1409.1556. [13] TIMOFTE R, SMET V D, GOOL L V. A+:adjusted anchored neighborhood regression for fast super-resolution[C]//ACCV 2014:Proceedings of the 12th Asian Conference on Computer Vision. Berlin:Springer, 2014:111-126. [14] TIMOFTE R, ROTHE R, GOOL L V. Seven ways to improve example-based single image super resolution[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:1865-1873. [15] 练秋生, 张钧芹, 陈书贞. 基于两级字典与分频带字典的图像超分辨率算法[J]. 自动化学报, 2013, 39(8):1310-1320.(LIAN Q S, ZHANG J Q, CHEN S Z. Single image super-resolution algorithm based on two-stage and multi-frequency-band dictionaries[J]. Acta Automatica Sinica, 2013, 39(8):1310-1320.) [16] BENGIO Y, SIMARD P, FRASCION P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2):157-66. [17] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2015:1026-1034. [18] 傅天宇, 金柳颀, 雷震, 等. 基于关键点逐层重建的人脸图像超分辨率方法[J]. 信号处理, 2016, 32(7):834-841.(FU T Y, JIN L Q, LEI Z, et al. Face super-resolution method based on key points layer by layer[J]. Journal of Signal Processing, 2016, 32(7):834-841.) |