[1] AGRAWAL R, IMIELINSKI T, SWAMI A N. Mining association rules between sets of items in large databases[C]//Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York:ACM,1993:207-216. [2] AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large databases[EB/OL].[2017-05-10]. http://www.cs.uu.nl/docs/vakken/adm/agrawalfast.pdf. [3] PARK J S, CHEN M S, YU P S. Using a hash-based method with transaction trimming for mining association rules[J]. IEEE Transactions on Knowledge & Data Engineering, 1997, 9(5):813-825. [4] OZEL S A, GUVENIR H A. An algorithm for mining association rules using perfect hashing and database pruning[C]//Proceedings of the 10th Turkish Symposium on Artificial Intelligence and Neural Networks. Berlin:Springer, 2001:257-264. [5] BRIN S, MOTWANI R, ULLMAN J D, et al. Dynamic itemset counting and implication rules for market basket data[J]. ACM Sigmod Record, 2001, 26(2):255-264. [6] HAN J, PEI J, YIN Y, et al. Mining frequent patterns without candidate generation:a frequent-pattern tree approach[J]. Data Mining & Knowledge Discovery, 2015, 8(1):53-87. [7] PYUN G, YUN U, RYU K H. Efficient frequent pattern mining based on linear prefix tree[J]. Knowledge-Based Systems, 2014, 55:125-139. [8] TSAY Y J, HSU T J, YU J R. FIUT:a new method for mining frequent itemsets[J]. Information Sciences, 2009, 179(11):1724-1737. [9] LIN K C, LIAO I E, CHEN Z S. An improved frequent pattern growth method for mining association rules[J]. Expert Systems with Applications, 2011, 38(5):5154-5161. [10] TSENG F C. An adaptive approach to mining frequent itemsets efficiently[J]. Expert Systems with Applications, 2012, 39(18):13166-13172. [11] BURDICK D, CALIMLIM M, FLANNICK J, et al. MAFIA:a maximal frequent itemset algorithm[J]. IEEE Transactions on Knowledge & Data Engineering, 2005, 17(11):1490-1504. [12] GOETHALS B, ZAKI M J. Advances in frequent itemset mining implementations:report on FIMI'03[J]. ACM Sigkdd Explorations Newsletter, 2003, 6(1):109-117. [13] BAYARDO R J J, AGRAWAL R, GUNOPULOS D. Constraint-based rule mining in large, dense databases[J]. Data Mining & Knowledge Discovery, 2000, 4(2/3):217-240. [14] GOUDA K, ZAKI M J. Efficiently mining maximal frequent itemsets[C]//ICDM 2001:Proceedings of the 2001 IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2001:163-170. [15] PALMERINI P, ORLANDO S, PEREGO R. Statistical properties of transactional databases[C]//SAC 2004:Proceedings of the 2004 ACM Symposium on Applied Computing. New York:ACM, 515-519. [16] STEINBACH M, TAN P N, KUMAR V. Support envelopes:a technique for exploring the structure of association patterns[C]//Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2004:296-305. [17] YAN H, CHEN K, LIU L, et al. SCALE:a scalable framework for efficiently clustering transactional data[J]. Data Mining & Knowledge Discovery, 2010, 20(1):1-27. [18] 闫珍, 皮德常, 吴文昊. 高维稀疏数据频繁项集挖掘算法的研究[J]. 计算机科学, 2011, 38(6):183-186.(YAN Z, PI D C, WU W H. Research on frequent itemsets mining algorithm for high-dimensional sparse data[J]. Computer Science, 2011, 38(6):183-186.) [19] GRAHNE G, ZHU J F. Efficiently using prefix-trees in mining frequent itemsets[EB/OL].[2017-05-10]. http://ceur-ws.org/Vol-90/grahne.pdf. [20] SALLEB-AOUISSI A, VRAIN C. A Contribution to the Use of Decision Diagrams for Loading and Mining Transaction Databases[M]. Amsterdam:IOS Press, 2007:220-242. [21] SHEPARD T H. Looking for a structural characterization of the sparseness measure of(frequent closed) itemset contexts[J]. Information Sciences, 2013, 222(3):343-361. [22] 严蔚敏, 吴伟民. 数据结构(C语言版)[M]. 北京:清华大学出版社, 2007:96-96.(YAN W M, WU W M. Data Structure(C Language Edition)[M]. Beijing:Tsinghua University Press, 2007:96-96.) [23] YAHIA S B, HAMROUNI T, NGUIFO E M. Frequent closed itemset based algorithms[J]. ACM SIGKDD Explorations Newsletter, 2006, 8(1):93-104. [24] PASQUIER N, BASTIDE Y, TAOUIL R, et al. Discovering frequent closed itemsets for association rules[C]//ICDT 1999:Proceedings of the 7th International Conference on Database Theory, LNCS 1540. Berlin:Springer, 1999:398-416. [25] 韩家炜, 范明.数据挖掘:概念与技术[M]. 北京:机械工业出版社, 2012:27-46.(HAN J W, FAN M. Data Mining:Concepts and Techniques[M]. Beijing:China Machine Press, 2012:27-46.) [26] IEEE computer society. Frequent itemset mining dataset repository[DB/OL].[2017-11-01].http://fimi.ua.ac.be/data/. |