[1] 伍杰华,朱岸青, 蔡雪莲, 等.基于隐朴素贝叶斯模型的社会关系推荐[J]. 计算机应用研究, 2014, 31(5):1381-1384, 1389.(WU J H, ZHU A Q, CAI X L, et al. Hidden naive Bayesian model for social relation recommendation[J]. Application Research of Computers, 2014, 31(5):1381-1384, 1389.) [2] GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12):61-70. [3] HERLOCKER L, KONSTAN A, BORCHERS A L, et al. An algorithmic framework for performing collaborative filtering[C]//SIGIR 1999:Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 1999:230-237. [4] 肖文强, 姚世军, 吴善明. 一种改进的Top-N协同过滤推荐算法[J].计算机应用研究, 2018, 35(1):105-112.(XIAO W Q, YAO S J, WU S M. Improved Top-N collaborative filtering recommendation algorithm[J]. Application Research of Computers, 2018, 35(1):105-112.) [5] 许海玲, 吴潇, 李晓东, 等.互联网推荐系统比较研究[J]. 软件学报, 2009, 20(2):350-362.(XU H L, WU X, LI X D, et al. Comparison study of Internet recommendation system[J]. Journal of Software, 2009, 20(2):350-362.) [6] JEONG B, LEE J, CHO H. Improving memory-based collaborative filtering via similarity updating and prediction modulation[J]. Information Sciences, 2010, 180(5):602-612. [7] ZHAO C, PENG Q, LIU C. An improved structural equivalence weighted similarity for recommender systems[J]. Procedia Engineering, 2011, 15:1869-1873. [8] 李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展, 2013, 23(7):116-119.(LI K C, LAN D M. A collaborative filtering hybrid recommendation algorithm for attribute and rating[J]. Computer Technology and Development, 2013, 23(7):116-119.) [9] VOZALIS M G, MARGARITIS K G. Using SVD and demographic data for the enhancement of generalized collaborative filtering[J]. Information Sciences, 2007, 177(15):3017-3037. [10] 杨阳, 向阳, 熊磊.基于矩阵分解与用户近邻模型的协同过滤推荐算法[J]. 计算机应用, 2012, 32(2):395-398.(YANG Y, XIANG Y, XIONG L. Collaborative filtering and recommendation algorithm based on matrix factorization and user nearest neighbor model[J]. Journal of Computer Applications, 2012, 32(2):395-398.) [11] CHEN G, WANG F, ZHANG C. Collaborative filtering using orthogonal nonnegative matrix tri-factorization[J]. Information Processing & Management, 2009, 45(3):368-379. [12] 郁雪, 李敏强.一种结合有效降维和K-means聚类的协同过滤推荐模型[J]. 计算机应用研究, 2009, 26(10):3718-3720.(YU X, LI M Q. Collaborative filtering recommendation model based on effective dimension reduction and K-means clustering[J]. Application Research of Computers, 2009, 26(10):3718-3720.) [13] 张林, 王晓东, 姚宇.基于项目聚类和时间因素改进的推荐算法[J]. 计算机应用, 2016, 36(增刊2):235-238.(ZHANG L, WANG X D, YAO Y. Improved recommendation algorithm based on item clustering and time factor[J]. Journal of Computer Applications, 2016, 36(S2):235-238.) [14] TSI C F, HUNG C. Cluster ensembles in collaborative filtering recommendation[J]. Applied Soft Computing, 2012, 12(4):1417-1425. [15] 李振博, 徐桂琼, 查九.基于用户谱聚类的协同过滤推荐算法[J]. 计算机技术与发展, 2014, 24(9):59-67.(LI Z B, XU G Q, ZHA J. A collaborative filtering recommendation algorithm based on user spectral clustering[J]. Computer Technology and Development, 2014, 24(9):59-67.) [16] XU D, TIAN Y. A comprehensive survey of clustering algorithms[J]. Annals of Data Science, 2015, 2(2):165-193. [17] SEHGAL G, GRAG D K. Comparison of various clustering algorithms[J]. International Journal of Computer Science and Information Technology, 2014, 5(3):3074-3076. [18] XUE G R, LIN CH X, YANG Q, et al. Scalable collaborative filtering using cluster-based smoothing[C]//Proceeding of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2005:114-121. [19] MARY S S, SELVI R T. A study of K-means and cure clustering algorithms[J]. International Journal of Engineering Research and Technology, 2014, 3(2):1985-1987. [20] 奉国和, 梁晓婷.协同过滤推荐研究综述[J]. 图书情报工作, 2011, 55(16):126-130.(FENG G H, LIANG X T. A summary of collaborative filtering recommendations[J]. Library and Information Service, 2011, 55(16):126-130.) |