[1] AGRAWAL R, SRIKAN R. Fast algorithms for mining association rules in large databases[C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, CA:Morgan Kaufmann Publishers Inc., 1994:487-499. [2] HAN J, PEI J, YIN Y. Mining frequent patterns without candidate generation[J]. ACM SIGMOD Record, 1999, 29(2):1-12. [3] ZAKI M J. Scalable algorithms for association mining[J]. IEEE Transactions on Knowledge & Data Engineering, 2000,12(3):372-390. [4] BRIN S, MOTWANI R, SILVERSTEIN C. Beyond market baskets:generalizing association rules to correlations[J]. ACM SIGMOD Record, 1997, 26(2):265-276. [5] 冯山, 游晋峰. 含负项的关联规则挖掘研究综述[J]. 四川师范大学学报(自然科学版), 2011, 34(5):746-750.(FENG S, YOU J F. The mining association rules with negative review[J]. Journal of Sichuan Normal University (Natural Science Edition), 2011, 34(5):746-750.) [6] WU X, ZHANG C, ZHANG S. Efficient mining of both positive and negative association rules[J]. ACM Transactions on Information Systems, 2004, 22(3):381-405. [7] PAUL A. Positive and negative association rule mining using correlation threshold and dual confidence approach[C]//Proceedings of the 2015 International Conference on Computational Intelligence in Data Mining. Berlin:Springer, 2016:249-260. [8] DONG X, SUN F, HAN X, et al. Study of positive and negative association rules based on multi-confidence and chi-squared test[C]//ADMA 2006:International Conference on Advanced Data Mining and Applications, LNCS 4093. Berlin:Springer, 2006:100-109. [9] HAMALAINEN W. Kingfisher:an efficient algorithm for searching for both positive and negative dependency rules with statistical significance measures[J]. Knowledge & Information Systems, 2012, 32(2):383-414. [10] PIAO X, WANG Z, LIU G. Research on mining positive and negative association rules based on dual confidence[C]//Proceedings of the 2010 International Conference on Internet Computing for Science & Engineering. Washington, DC:IEEE Computer Society, 2010:102-105. [11] WU T, CHEN Y, HAN J. Re-examination of interestingness measures in pattern mining:a unified framework[J]. Data Mining & Knowledge Discovery, 2010, 21(3):371-397. [12] 董祥军, 王淑静, 宋瀚涛. 基于两级支持度的正、负关联规则挖掘[J]. 计算机工程, 2005, 31(10):16-18.(DONG X J, WANG S J, SONG H T. Mining positive and negative association rules based on two level support[J]. Computer Engineering, 2005, 31(10):16-18.) [13] DONG X, NIU Z, SHI X, et al. Mining both positive and negative association rules from frequent and infrequent itemsets[C]//Proceedings of the 3rd International Conference on Advanced Data Mining and Applications. Berlin:Springer-Verlag, 2007:122-133. [14] SWESI I M A O, BAKAR A A, KADIR A S A. Mining positive and negative association rules from interesting frequent and infrequent itemsets[C]//Proceedings of the 20129th International Conference on Fuzzy Systems and Knowledge Discovery. Piscataway, NJ:IEEE, 2012:650-655. [15] ANTONIE M L. Mining positive and negative association rules:an approach for confined rules[C]//Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases. New York:Springer-Verlag, 2004:27-38. |