[1] 林怡,潘琛,陈映鹰,等.基于遥感影像光谱分析的蓝藻水华识别方法[J].同济大学学报(自然科学版),2011,39(8):1247-1252.(LIN Y, PAN C, CHEN Y Y, et al. Recognition of cyanobacteria bloom based on spectral analysis of remote sensing imagery[J]. Journal of Tongji University (Natural Science), 2011, 39(8):1247-1252.) [2] 陈云,戴锦芳.基于遥感数据的太湖蓝藻水华信息识别方法[J].湖泊科学,2008,20(2):179-183.(CHEN Y, DAI J F. Extraction methods of cyanobacteria bloom in Lake Taihu based on RS data[J]. Journal of Lake Sciences, 2008, 20(2):179-183.) [3] 李亚春,谢小萍,朱小莉,等.结合卫星遥感技术的太湖蓝藻水华形成温度特征分析[J].湖泊科学,2016,28(6):1256-1264.(LI Y C, XIE X P, ZHU X L, et al. Applying remote sensing techniques in analysis of temperature features causing cyanobacteria bloom in Lake Taihu[J]. Journal of Lake Sciences, 2016, 28(6):1256-1264.) [4] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [5] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL].[2017-10-26]. http://www.ee.bgu.ac.il/~rrtammy/DNN/reading/SemanticYuille.pdf. [6] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 2014 International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014:2672-2680. [7] 焦李成,杨淑媛,刘芳,等.神经网络七十年:回顾与展望[J].计算机学报,2016,39(8):1697-1716.(JIAO L C, YANG S Y, LIU F, et al. Seventy years beyond neural networks:retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8):1697-1716.) [8] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [9] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2017-10-26]. http://x-algo.cn/wp-content/uploads/2017/01/VERY-DEEP-CONVOLUTIONAL-NETWORK-SFOR-LARGE-SCALE-IMAGE-RECOGNITION.pdf. [10] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:1-9. [11] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958. [12] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 201532nd International Conference on International Conference on Machine Learning. Cambridge, MA:MIT Press, 2015:448-456. [13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:770-778. [14] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//MICCAI 2015:Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241. [15] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2017-10-26]. http://yeolab.weebly.com/uploads/2/5/5/0/25509700/a_method_for_stochastic_optimization_.pdf. |