[1] LIANG Z P, LAUTERBUR P C. Principles of Magnetic Resonance Imaging:a Signal Processing Perspective[M]. Wiley:Wiley-IEEE Press, 1999:1-28. [2] MCROBBIE D W, MOORE E A, GRAVES M J, et al. MRI from Picture to Proton[M]. Cambridge, UK:Cambridge University Press, 2006:1-25. [3] COHEN M S, WEISSKOFF R M. Ultra-fast imaging[J]. Magnetic Resonance Imaging, 1991, 9(1):1-37. [4] LUSTIG M, DONOHO D, PAULY J M. Sparse MRI:the application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6):1182-1195. [5] PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE:sensitivity encoding for fast MRI[J]. Magnetic Resonance in Medicine, 1999, 42(5):952-962. [6] SODICCKSON D K, MANNING W J. SiMultaneous Acquisition of Spatial Harmonics (SMASH):fast imaging with radiofrequency coil arrays[J]. Magnetic Resonance in Medicine, 1997, 38(4):591-603. [7] 王达,包尚联.并行磁共振成像GRAPPA-SENSE技术[J].中国医学影像技术,2011,27(8):1688-1693.(WANG D, BAO S L. Parallel magnetic resonance image technology of GRAPPA-SENSE[J]. Chinese Journal of Medical Imaging Technology, 2011, 27(8):1688-1693.) [8] 公伟,迟洁茹,杨新强.基于GRAPPA图像重建的采样轨迹[J].计算机应用.2010,30(7):1847-1848.(GONG W, CHI J R, YANG X Q. New trajectory for image reconstruction based on GRAPPA[J]. Journal of Computer Applications, 2010, 30(7):1847-1848.) [9] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509. [10] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. [11] 陈伟业,孙权森.结合压缩感知与非局部信息的图像超分辨率重建[J].计算机应用,2016,36(9):2570-2575.(CHEN W Y, SUN Q S. Image super-resolution reconstruction combined with compressed sensing and nonlocal information[J]. Journal of Computer Applications, 2016, 36(9):2570-2575.) [12] 杨学峰,程耀瑜,王高.基于小波域压缩感知的遥感图像超分辨算法[J].计算机应用,2017,37(5):1430-1433,1444.(YANG X F, CHENG Y Y, WANG G. Super-resolution algorithm for remote sensing images based on compressive sensing in wavelet domain[J]. Journal of Computer Applications, 2017, 37(5):1430-1433, 1444.) [13] GABAY D. Chapter IX applications of the method of multipliers to variational inequalities[J]. Studies in Mathematics and its Applications, 1983, 15:299-331. [14] SPINGARN J E. Partial inverse of a monotone operator[J]. Applied Mathematics and Optimization, 1983, 10(1):247-265. [15] PEACEMAN D H, Jr RACHFORD H H. The numerical solution of parabolic elliptic differential equations[J]. Journal of the Society for Industrial and Applied Mathematics, 1955, 3(1):28-41. [16] GABAY D, MERCIER B. A dual algorithm for the solution of nonlinear variational problems via finite element approximations[J]. Computers and Mathematics with Applications, 1976, 2(1):17-40. [17] YANG J F, ZHANG Y. Alternating direction algorithms for l1-problems in compressive sensing[J]. SIAM Journal on Scientific Computing, 2011, 33(1):250-278. [18] MA S Q, YIN W T, ZHANG Y, et al. An efficient algorithm for compressed MR imaging using total variation and wavelets[C]//CVPR 2008:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2008:1-8. [19] YANG J F, ZHANG Y, YIN W T. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):288-297. [20] MOREAU J J. Fonctions convexes duales et points proximaux dans un espace hilbertien[J]. Comptes Rendus Hebdomadaires des Séances de Lacadémie des Sciences, 1962, 255:2897-2899. [21] BURGER M, SAWATZKY A, STEIDL G. First order algorithms in variational image processing[M]//GLOWINSKI R, OSHER S J, YIN W T. Splitting Methods in Communication, Imaging, Science, and Engineering. Cham:Springer, 2016:345-407. [22] DAUBECHIES I, DEFRISE M, de MOL C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2003, 57(11):1413-1457. [23] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1):183-202. [24] HUANG J Z, ZHANG S T, METAXAS D. Efficient MR image reconstruction for compressed MR imaging[J]. Medical Image Analysis, 2011, 15(5):670-679. [25] CHEN C, LI Y Q, AXEL L, et al. Real time dynamic MRI by exploiting spatial and temporal sparsity[J]. Magnetic Resonance Imaging, 2016, 34(4):473-482. [26] BECK A, TEBOULLE M. Smoothing and first order methods:a unified framework[J]. SIAM Journal on Optimization, 2012, 22(2):557-580. [27] BAUSCHKE H H, COMBETTES P L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces[M]. Berlin:Springer, 2011:399-413. [28] EHRHATDT M J, BETCKE M M. Multi-contrast MRI reconstruction with structure-guided total variation[J]. SIAM Journal on Imaging Science, 2016, 9(3):1084-1106. |