Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2948-2954.DOI: 10.11772/j.issn.1001-9081.2022081242
• Multimedia computing and computer simulation • Previous Articles Next Articles
Received:
2022-08-22
Revised:
2023-01-05
Accepted:
2023-01-06
Online:
2023-09-10
Published:
2023-09-10
Contact:
Zhiwei QIAO
About author:
CHEN Mengmeng, born in 1998, M. S. candidate. Her research interests include medical image reconstruction, image processing.
Supported by:
通讯作者:
乔志伟
作者简介:
陈蒙蒙(1998—),女,山西介休人,硕士研究生,主要研究方向:医学图像重建、图像处理;
基金资助:
CLC Number:
Mengmeng CHEN, Zhiwei QIAO. Sparse reconstruction of CT images based on Uformer with fused channel attention[J]. Journal of Computer Applications, 2023, 43(9): 2948-2954.
陈蒙蒙, 乔志伟. 基于融合通道注意力的Uformer的CT图像稀疏重建[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2948-2954.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022081242
算法 | PSNR/dB | SSIM | RMSE | 参数量/106 | 浮点运算量/GFLOPs | 重建时间/s |
---|---|---|---|---|---|---|
DnCNN | 32.18 | 0.939 | 0.026 | 0.14 | 18.45 | 0.18 |
RED-CNN | 32.96 | 0.963 | 0.023 | 0.21 | 24.60 | 0.18 |
U-Net | 36.03 | 0.955 | 0.017 | 7.77 | 27.42 | 0.18 |
FBPConvNet | 37.69 | 0.962 | 0.014 | 9.16 | 29.60 | 0.19 |
Uformer | 38.54 | 0.982 | 0.012 | 20.77 | 82.01 | 0.31 |
CA-Uformer | 39.30 | 0.985 | 0.011 | 76.61 | 311.25 | 0.30 |
Tab. 1 Experimental results of different algorithms on test set
算法 | PSNR/dB | SSIM | RMSE | 参数量/106 | 浮点运算量/GFLOPs | 重建时间/s |
---|---|---|---|---|---|---|
DnCNN | 32.18 | 0.939 | 0.026 | 0.14 | 18.45 | 0.18 |
RED-CNN | 32.96 | 0.963 | 0.023 | 0.21 | 24.60 | 0.18 |
U-Net | 36.03 | 0.955 | 0.017 | 7.77 | 27.42 | 0.18 |
FBPConvNet | 37.69 | 0.962 | 0.014 | 9.16 | 29.60 | 0.19 |
Uformer | 38.54 | 0.982 | 0.012 | 20.77 | 82.01 | 0.31 |
CA-Uformer | 39.30 | 0.985 | 0.011 | 76.61 | 311.25 | 0.30 |
稀疏角度数 | PSNR/dB | SSIM | RMSE |
---|---|---|---|
15 | 33.11 | 0.956 | 0.022 |
30 | 36.40 | 0.974 | 0.015 |
60 | 39.30 | 0.985 | 0.011 |
90 | 40.36 | 0.988 | 0.010 |
Tab. 2 Experimental results on test set with different sparse angles
稀疏角度数 | PSNR/dB | SSIM | RMSE |
---|---|---|---|
15 | 33.11 | 0.956 | 0.022 |
30 | 36.40 | 0.974 | 0.015 |
60 | 39.30 | 0.985 | 0.011 |
90 | 40.36 | 0.988 | 0.010 |
模型 | PSNR/dB | SSIM | RMSE | 参数量 /106 | 浮点运算量/FLOPs | 重建时间/s |
---|---|---|---|---|---|---|
No-CA | 36.44 | 0.975 | 0.015 | 76.56 | 311.22 | 0.30 |
No-Res | 38.83 | 0.984 | 0.012 | 76.61 | 311.25 | 0.30 |
CA-Uformer | 39.30 | 0.985 | 0.011 | 76.61 | 311.25 | 0.30 |
Tab. 3 Results on test set with different modules
模型 | PSNR/dB | SSIM | RMSE | 参数量 /106 | 浮点运算量/FLOPs | 重建时间/s |
---|---|---|---|---|---|---|
No-CA | 36.44 | 0.975 | 0.015 | 76.56 | 311.22 | 0.30 |
No-Res | 38.83 | 0.984 | 0.012 | 76.61 | 311.25 | 0.30 |
CA-Uformer | 39.30 | 0.985 | 0.011 | 76.61 | 311.25 | 0.30 |
模块位置设计 | PSNR/dB | SSIM | RMSE |
---|---|---|---|
CA-Identity | 38.04 | 0.984 | 0.013 |
Transformer-CA | 38.57 | 0.983 | 0.012 |
CA-Uformer | 39.30 | 0.985 | 0.011 |
Tab. 4 Results of different module positions on test set
模块位置设计 | PSNR/dB | SSIM | RMSE |
---|---|---|---|
CA-Identity | 38.04 | 0.984 | 0.013 |
Transformer-CA | 38.57 | 0.983 | 0.012 |
CA-Uformer | 39.30 | 0.985 | 0.011 |
LFE块实现方式 | PSNR/dB | SSIM | RMSE | 参数量/106 | 浮点运算量/GFLOPs | 重建时间/s |
---|---|---|---|---|---|---|
MLP | 38.26 | 0.982 | 0.012 | 19.27 | 78.41 | 0.27 |
3×3Conv+BN+GELU | 38.53 | 0.974 | 0.012 | 20.66 | 84.24 | 0.27 |
LeFF | 38.62 | 0.973 | 0.012 | 19.43 | 80.13 | 0.31 |
Conv | 39.30 | 0.985 | 0.011 | 76.61 | 311.25 | 0.30 |
Tab. 5 Results of different LFE blocks on test set
LFE块实现方式 | PSNR/dB | SSIM | RMSE | 参数量/106 | 浮点运算量/GFLOPs | 重建时间/s |
---|---|---|---|---|---|---|
MLP | 38.26 | 0.982 | 0.012 | 19.27 | 78.41 | 0.27 |
3×3Conv+BN+GELU | 38.53 | 0.974 | 0.012 | 20.66 | 84.24 | 0.27 |
LeFF | 38.62 | 0.973 | 0.012 | 19.43 | 80.13 | 0.31 |
Conv | 39.30 | 0.985 | 0.011 | 76.61 | 311.25 | 0.30 |
1 | SIDKY E Y, KAO C M, PAN X C. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X-Ray Science and Technology, 2006, 14(2): 119-139. |
2 | 乔志伟. 总变差约束的数据分离最小图像重建模型及其 Chambolle-Pock求解算法[J]. 物理学报, 2018, 67(19):338-351. 10.7498/aps.67.20180839 |
QIAO Z W. The total variation constrained data divergence minimization model for image reconstruction and its Chambolle-Pock solving algorithm[J]. Acta Physica Sinica,2018, 67(19):338-351. 10.7498/aps.67.20180839 | |
3 | BROOKS T, MILDENHALL B, XUE T F, et al. Unprocessing images for learned raw denoising[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11028-11037. 10.1109/cvpr.2019.01129 |
4 | LEE D, YOO J, YE J C. Deep residual learning for compressed sensing MRI[C]// Proceedings of the IEEE 14th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2017: 15-18. 10.1109/isbi.2017.7950457 |
5 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
6 | HUANG G, LIU Z, L van der MAATEN, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE conference on computer vision and pattern recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
7 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. Cambridge: MIT Press, 2014: 2672-2680. |
8 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
9 | JIN K H, McCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509-4522. 10.1109/tip.2017.2713099 |
10 | PAN X C, SIDKY E Y, VANNIER M. Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?[J]. Inverse Problems, 2009, 25(12): No.123009. 10.1088/0266-5611/25/12/123009 |
11 | CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535. 10.1109/tmi.2017.2715284 |
12 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
13 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
14 | ZHANG Z C, LIANG X K, DONG X, et al. A sparse-view CT reconstruction method based on combination of DenseNet and deconvolution[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1407-1417. 10.1109/tmi.2018.2823338 |
15 | XU L, REN J S J, LIU C, et al. Deep convolutional neural network for image deconvolution[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 1. Cambridge: MIT Press, 2014: 1790-1798. |
16 | WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2536-2545. 10.1109/tmi.2017.2708987 |
17 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. |
18 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03) [2022-10-22].. |
19 | HUANG Z L, WANG X G, HUANG L C, et al. CCNet: criss-cross attention for semantic segmentation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 603-612. 10.1109/iccv.2019.00069 |
20 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. 10.1109/iccv48922.2021.00986 |
21 | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803. 10.1109/cvpr.2018.00813 |
22 | WANG Z D, CUN X D, BAO J M, et al. Uformer: a general U-shaped Transformer for image restoration[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17662-17672. 10.1109/cvpr52688.2022.01716 |
23 | PENG Z L, HUANG W, GU S Z, et al. Conformer: local features coupling global representations for visual recognition[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 357-366. 10.1109/iccv48922.2021.00042 |
24 | YUAN K, GUO S P, LIU Z W, et al. Incorporating convolution designs into visual Transformers[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 559-568. 10.1109/iccv48922.2021.00062 |
25 | ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. 10.1109/tip.2017.2662206 |
[1] | Liehong REN, Lyuwen HUANG, Xu TIAN, Fei DUAN. Multivariate long-term series forecasting method with DFT-based frequency-sensitive dual-branch Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2739-2746. |
[2] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[3] | Jiepo FANG, Chongben TAO. Hybrid internet of vehicles intrusion detection system for zero-day attacks [J]. Journal of Computer Applications, 2024, 44(9): 2763-2769. |
[4] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[5] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[6] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[7] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[8] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
[9] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[10] | Fan YANG, Yao ZOU, Mingzhi ZHU, Zhenwei MA, Dawei CHENG, Changjun JIANG. Credit card fraud detection model based on graph attention Transformation neural network [J]. Journal of Computer Applications, 2024, 44(8): 2634-2642. |
[11] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. |
[12] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[13] | Junfeng SHEN, Xingchen ZHOU, Can TANG. Dual-channel sentiment analysis model based on improved prompt learning method [J]. Journal of Computer Applications, 2024, 44(6): 1796-1806. |
[14] | Xiting LYU, Jinghua ZHAO, Haiying RONG, Jiale ZHAO. Information diffusion prediction model based on Transformer and relational graph convolutional network [J]. Journal of Computer Applications, 2024, 44(6): 1760-1766. |
[15] | Xun YAO, Zhongzheng QIN, Jie YANG. Generative label adversarial text classification model [J]. Journal of Computer Applications, 2024, 44(6): 1781-1785. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||