[1] HAWKINS D. Identification of Outliers[M]. London:Chapman and Hall, 1980:1-2. [2] 王习特,申德荣,白梅,等.BOD:一种高效的分布式离群点检测算法[J].计算机学报,2016,39(1):36-51.(WANG X T, SHEN D R, BAI M, et al. BOD:an efficient algorithm for distributed outlier detection[J]. Chinese Journal of Computers, 2016, 39(1):36-51). [3] 邹云峰,张昕,宋世渊,等.基于局部密度的快速离群点检测算法[J].计算机应用,2017,37(10):2932-2937.(ZOU Y F, ZHANG X, SONG S Y, et al. Fast outlier detection algorithm based on local density[J]. Journal of Computer Applications, 2017, 37(10):2932-2937.) [4] HAN J W, KAMBER M, PEI J. Data Mining:Concepts and Techniques[M]. 3rd ed. San Francisco:Morgan Kaufmann, 2011:543-583. [5] ROUSSEEUW P J, LEROY A M. Robust Regression and Outlier Detection[M]. Hoboken:John Wiley and Sons, 1987:1-18. [6] KNORR E M, NG R T, TUCAKOV V. Distance-based outliers:algorithms and applications[J]. The VLDB Journal, 2000, 8(3):237-253. [7] KNORR E, NG R. A unified notion of outliers:properties and computation[C]//Proceedings of the 1997 International Conference on Knowledge Discovery & Data Mining. Menlo Park, CA:AAAI Press, 1997:219-222. [8] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF:identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2000:93-104. [9] JAIN A K, MURTY M N, FLYNN P J. Data clustering:a review[J]. ACM Computing Surveys, 1999, 31(3):264-323. [10] JIANG F, SUI Y F, CAO C G. An information entropy-based approach to outlier detection in rough sets[J]. Expert Systems with Applications, 2010, 37(9):6338-6344. [11] LIN T Y. Neighborhood systems-application to qualitative fuzzy and rough sets[C]//Advances in Machine Intelligence and Soft-Computing. Durham:Department of Electrical Engineering, 1997:132-155. [12] HU Q H, YU D R, LIU J F, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information Sciences, 2008, 178(18):3577-3594. [13] CHEN Y M, MIAO D Q, ZHANG H Y. Neighborhood outlier detection[J]. Expert Systems with Applications, 2010, 37(12):8745-8749. [14] WILSON D R, MARTINEZ T R. Improved heterogeneous distance functions[J]. Journal of Artificial Intelligence Research, 1997, 6(1):1-34. [15] STANFILL C, WALTZ D. Toward memory-based reasoning[J]. Communications of the ACM, 1986, 29(12):1213-1228. [16] WILLIAMS J W J. Algorithm 232(heapsort)[J]. Communications of the ACM, 1964, 7(6):347-348. [17] RAMASWAMY S, RASTOGI R, SHIM K. Efficient algorithms for mining outliers from large datasets[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2000:427-438. [18] BAY S D. The UCI KDD repository[EB/OL].[2017-05-12]. http://kdd.ics.uci.edu. [19] AGGARWAL C C, YU P S. Outlier detection for high dimensional data[C]//Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2001:37-46. [20] HARKINS, HE H X, WILLIAMS G J, et al. Outlier detection using replicator neural networks[C]//Proceedings of the 4th International Conference on Data Warehousing and Knowledge Discovery. Berlin:Springer, 2002:170-180. |